Частные производные
Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.
Подобные документы
Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.
контрольная работа, добавлен 23.03.2022Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015- 78. Предел функции
Изучение особенностей предела функции по Гейне. Исследование теорем о пределах. Рассмотрение методов избавления от неопределенности. Построение графиков элементарных функций. Характеристика предела функции в точке. Анализ сущности множества значений.
книга, добавлен 21.12.2014 Правила нахождения матрицы. Процесс расчета алгебраического предела. Сущность производной функции, ее порядок расчета. Определение наиболее оптимального варианта размера ящика при наименьших материальных расходах. Составление уравнения касательных.
контрольная работа, добавлен 29.05.2013Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.
статья, добавлен 31.07.2018Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Определение числовой последовательности и ее предела. Свойства сходящихся последовательностей. Предел функции одной переменной. Основные правила вычисления пределов. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификации.
шпаргалка, добавлен 07.09.2013Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
лабораторная работа, добавлен 06.10.2022Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.
лекция, добавлен 26.01.2014Математическое построение оптимального плана и нахождение экстремального значения его функции. Построение двойственной задачи линейного программирования и её целочисленное решение. Описание области допустимых значений переменных, их максимальные функции.
контрольная работа, добавлен 18.02.2013Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Дифференциальные уравнения первого, второго и высших порядков. Ряды Тейлора и Маклорена. Евклидово пространство. Понятие функции нескольких переменных. Задачи оптимизации. Приложения определенного интеграла. Матрицы и действия с ними. Числовые ряды.
учебное пособие, добавлен 15.09.2017- 88. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
дипломная работа, добавлен 16.01.2014Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Неявные функции, условие их существования и дифференцируемости. Касательная плоскость и нормаль к поверхности. Геометрический смысл производных и дифференциала. Градиент функции в точке координат. Рассмотрение значения производной по направлению.
лекция, добавлен 26.01.2014Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.
учебное пособие, добавлен 11.02.2015Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013- 94. Булевы функции
Существенная и фиктивная переменная функции. Наборы значений, которые принимают переменные. Функция, полученная с помощью подстановок функций друг в друга на места переменных, а также с помощью переименования этих переменных. Выражение суперпозиции.
контрольная работа, добавлен 24.09.2012 Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.
учебное пособие, добавлен 13.09.2015- 96. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015 Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
контрольная работа, добавлен 17.12.2013Анализ произвольной функции, определенной на интервале от нуля до бесконечности. Свойства усредненной функции, ее первой и второй производных. Анализ их поведения в случае осциллирующих коэффициентов. Определение интегралов в числителе и знаменателе.
контрольная работа, добавлен 26.02.2020Арифметические операции над функциями, имеющими предел. Доказательство непрерывности функции в точке. Переход к пределу в неравенствах. Свойства непрерывной математической функции. Изучение классификации точек разрыва в арифметических неравенствах.
презентация, добавлен 16.10.2014Методика оценки шумовой компоненты во временных рядах с переменным шагом, ее обоснование и разработка алгоритма удаления шума. Выполнение требований гладкости функции, представляющей исходные данные и имеющей непрерывные производные до третьего порядка.
статья, добавлен 08.03.2019