Частные производные

Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

Подобные документы

  • Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.

    контрольная работа, добавлен 23.03.2022

  • Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.

    контрольная работа, добавлен 16.09.2015

  • Изучение особенностей предела функции по Гейне. Исследование теорем о пределах. Рассмотрение методов избавления от неопределенности. Построение графиков элементарных функций. Характеристика предела функции в точке. Анализ сущности множества значений.

    книга, добавлен 21.12.2014

  • Правила нахождения матрицы. Процесс расчета алгебраического предела. Сущность производной функции, ее порядок расчета. Определение наиболее оптимального варианта размера ящика при наименьших материальных расходах. Составление уравнения касательных.

    контрольная работа, добавлен 29.05.2013

  • Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.

    статья, добавлен 31.07.2018

  • Определение числовой последовательности и ее предела. Свойства сходящихся последовательностей. Предел функции одной переменной. Основные правила вычисления пределов. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификации.

    шпаргалка, добавлен 07.09.2013

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

    лабораторная работа, добавлен 06.10.2022

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Математическое построение оптимального плана и нахождение экстремального значения его функции. Построение двойственной задачи линейного программирования и её целочисленное решение. Описание области допустимых значений переменных, их максимальные функции.

    контрольная работа, добавлен 18.02.2013

  • Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.

    презентация, добавлен 13.02.2016

  • Дифференциальные уравнения первого, второго и высших порядков. Ряды Тейлора и Маклорена. Евклидово пространство. Понятие функции нескольких переменных. Задачи оптимизации. Приложения определенного интеграла. Матрицы и действия с ними. Числовые ряды.

    учебное пособие, добавлен 15.09.2017

  • Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.

    дипломная работа, добавлен 21.01.2011

  • Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.

    дипломная работа, добавлен 16.01.2014

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Неявные функции, условие их существования и дифференцируемости. Касательная плоскость и нормаль к поверхности. Геометрический смысл производных и дифференциала. Градиент функции в точке координат. Рассмотрение значения производной по направлению.

    лекция, добавлен 26.01.2014

  • Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.

    учебное пособие, добавлен 11.02.2015

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Существенная и фиктивная переменная функции. Наборы значений, которые принимают переменные. Функция, полученная с помощью подстановок функций друг в друга на места переменных, а также с помощью переименования этих переменных. Выражение суперпозиции.

    контрольная работа, добавлен 24.09.2012

  • Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.

    учебное пособие, добавлен 13.09.2015

  • Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.

    лекция, добавлен 08.05.2015

  • Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.

    контрольная работа, добавлен 17.12.2013

  • Анализ произвольной функции, определенной на интервале от нуля до бесконечности. Свойства усредненной функции, ее первой и второй производных. Анализ их поведения в случае осциллирующих коэффициентов. Определение интегралов в числителе и знаменателе.

    контрольная работа, добавлен 26.02.2020

  • Арифметические операции над функциями, имеющими предел. Доказательство непрерывности функции в точке. Переход к пределу в неравенствах. Свойства непрерывной математической функции. Изучение классификации точек разрыва в арифметических неравенствах.

    презентация, добавлен 16.10.2014

  • Методика оценки шумовой компоненты во временных рядах с переменным шагом, ее обоснование и разработка алгоритма удаления шума. Выполнение требований гладкости функции, представляющей исходные данные и имеющей непрерывные производные до третьего порядка.

    статья, добавлен 08.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.