Понятие кратного интеграла
Геометрический смысл двумерной интегральной суммы. Сущность непрерывного, кусочно-непрерывного и монотонного интегралов. Назначение процедуры повторного интегрирования. Свойства одномерных сумм Дарбу. Необходимое и достаточное условие интегрируемости.
Подобные документы
Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016- 27. Интеграл Лебега
Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
курсовая работа, добавлен 20.10.2010 Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.
презентация, добавлен 18.09.2013Оценка основных понятий функциональной зависимости. Дифференциальное исчисление функций одной переменной. Характеристика неопределенных интегралов, исследование функций. Понятие кратного интеграла. Определение особенностей дифференциальных уравнений.
курс лекций, добавлен 20.08.2017Понятие определенного интеграла. Алгоритмы нахождения определенного интеграла методами трапеций и средних прямоугольников. Геометрический смысл определенного интеграла. Оценка абсолютной погрешности метода трапеций. Метод левых и правых прямоугольников.
курсовая работа, добавлен 27.02.2020Понятие криволинейного интеграла 1-ого рода от функции как предела интегральной суммы, полученной в результате разбиения этой кривой на малые участки с длиной и постоянной плотностью, механический смысл и порядок определения. Координаты центра тяжести.
практическая работа, добавлен 18.10.2013Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.
контрольная работа, добавлен 03.03.2014Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.
контрольная работа, добавлен 25.09.2017Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.
учебное пособие, добавлен 13.09.2015Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.
учебное пособие, добавлен 24.08.2012Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.
практическая работа, добавлен 02.06.2017Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.
реферат, добавлен 20.10.2014Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.
курсовая работа, добавлен 15.03.2013Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.
курсовая работа, добавлен 10.12.2017Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.
курсовая работа, добавлен 13.11.2011Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Геометрический смысл производной функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Общие свойства конформных отображений. Линейная, дробно-линейная, степенная функция. Понятие римановой поверхности. Функция Жуковского.
курсовая работа, добавлен 08.11.2017Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011Определение площади плоской фигуры, объема тел вращения, образованных при вращении вокруг оси, с помощью определенного интеграла. Понятие несобственного интеграла с бесконечными пределами интегрирования, несобственные интегралы от разрывных функций.
лекция, добавлен 09.04.2018Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.
курс лекций, добавлен 10.06.2015Исследование основных признаков сравнения несобственных интегралов 1 и 2 рода. Характеристика понятия абсолютно и условно сходящегося несобственного интеграла. Определение несобственного интеграла по бесконечному промежутку и от неограниченной функции.
презентация, добавлен 18.09.2013Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015