Плоскость и пространство

Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

Подобные документы

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Изображение декартового произведения множеств на координатной плоскости. Отражение отношения между множествами на кругах Эйлера. Разбиение множества на классы. Операция объединения и операция пересечения множеств. Декартово произведение n-множеств.

    контрольная работа, добавлен 28.04.2016

  • Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.

    учебное пособие, добавлен 25.11.2013

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Создание множества задач к одному рисунку. Построение сечения пирамиды плоскостью, проходящей через середину ребра, перпендикулярно прямой. Нахождение отношения объемов конусов, площади боковой поверхности, расстояния секущей плоскости и площади круга.

    практическая работа, добавлен 11.05.2015

  • Понятие независимой переменной и зависимой переменной функции. Методика построения графика функции - множества всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты - соответствующим значениям функции.

    презентация, добавлен 07.11.2012

  • Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.

    презентация, добавлен 19.09.2017

  • Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.

    презентация, добавлен 21.09.2013

  • Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.

    лекция, добавлен 06.09.2017

  • Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.

    курсовая работа, добавлен 22.01.2015

  • Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.

    учебное пособие, добавлен 28.12.2013

  • Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.

    курс лекций, добавлен 23.09.2012

  • Рассмотрение планарного разбиения дискретного множества точек по Воронову. Обзор основных свойств диаграммы. Определение линейной сложности. Изучение последовательности построения диаграммы. Выявление свойств разбивающей цепи и двухсвязного списка.

    презентация, добавлен 06.03.2015

  • Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.

    презентация, добавлен 25.10.2016

  • Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.

    контрольная работа, добавлен 01.03.2017

  • Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.

    статья, добавлен 26.04.2019

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

  • Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.

    курсовая работа, добавлен 26.11.2014

  • Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.

    курсовая работа, добавлен 21.05.2012

  • Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.

    курс лекций, добавлен 06.08.2017

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.

    курсовая работа, добавлен 22.04.2011

  • Характеристика моделирования объемов реализации услуг при использовании многомерной линейной функциональной зависимости. Анализ оценок потребления электроэнергии населением региона с учетом неопределенности множества природно-климатических факторов.

    статья, добавлен 30.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.