Характеристика и методика вычисления интеграла Римана
Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
Подобные документы
Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
реферат, добавлен 16.12.2017- 27. Двойной интеграл
Сущность и геометрический смысл двойного интеграла. Понятие и принципы построения цилиндрического бруса, порядок и этапы вычисления его фактического объема. Методика и основные этапы определения внутреннего интеграла и анализ полученных результатов.
практическая работа, добавлен 18.10.2013 Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
презентация, добавлен 17.09.2013Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Понятие интеграла от функции двух, трех и большего числа переменных, основная методика их выражения в декартовых координатах. Двойные и тройные интегралы, их свойства и способы вычисления. Вычисление криволинейных интегралов с помощью формулы Грина.
лекция, добавлен 29.09.2014Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Исследование преобразований интеграла и анализ его групповой структуры. Задача Л. Эйлера как одна из классических задач теории трансцендентных чисел. Проблема оценки интеграла, а также меры иррациональности значений дзета-функции Римана в целых точках.
статья, добавлен 27.05.2018Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.
курсовая работа, добавлен 02.11.2010Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.
контрольная работа, добавлен 14.05.2012Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.
реферат, добавлен 02.09.2013Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.
курсовая работа, добавлен 12.11.2011Понятие о натуральных, комплексных и иррациональных числах. Правила математического доказательства теорем. Принципы исчисления дифференциала и производной функции. Приведение формулы Ньютона-Лейбница. Расчет криволинейного и поверхностного интегралов.
конспект урока, добавлен 07.12.2011Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.
контрольная работа, добавлен 17.02.2011Рассмотрение биографии великих ученых и их основных заслуг в области математики. Характеристика достижений и научных открытий Евклида, Пифагора, И. Ньютона, Б. Паскаля, Г. Лейбница, Р. Декарда, Л. Эйлера, Б. Римана, К. Гаусса, А. Тьюринга и Э. Уайлса.
презентация, добавлен 04.05.2017Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.
контрольная работа, добавлен 03.03.2014Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.
методичка, добавлен 27.08.2017Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017