Теория вероятности и математическая статистика

Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

Подобные документы

  • Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.

    доклад, добавлен 10.02.2014

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

  • Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

    презентация, добавлен 05.10.2014

  • Свойства плотности распределения вероятностей непрерывной случайной величины. Характеристика особенностей математического ожидания. Основы расчета плотности распределения. Рассмотрение аспектов определения дисперсии и среднего квадратического отклонения.

    курсовая работа, добавлен 09.06.2014

  • Рассмотрение особенностей развития математического обучения и его влияния на систему обучения теории вероятности. Перекрестный и сравнительный анализ влияния выбора направления развития теории вероятности. Рекомендации по внедрению разработок в обучение.

    статья, добавлен 28.10.2024

  • Расчет формулы преобразования Лапласа для алгебраизации дифференциальных уравнений, ее свойства: линейность, дифференцирование оригинала, свертка, запаздывание, сдвиг и масштабирование. Расчет функций Хевисайда и Дирака и применение теоремы о вычетах.

    презентация, добавлен 20.02.2014

  • Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.

    дипломная работа, добавлен 07.12.2012

  • История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.

    реферат, добавлен 21.05.2013

  • Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.

    контрольная работа, добавлен 13.02.2013

  • Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.

    контрольная работа, добавлен 13.01.2011

  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа, добавлен 10.12.2013

  • Вычисление основных выборочных характеристик. Анализ несмещенной выборочной оценки для среднего квадратического отклонения. Коэффициент вариации. Ранжирование выборочных данных. Вычисление интервальных оценок для математического ожидания и дисперсии.

    курсовая работа, добавлен 21.01.2012

  • Вычисление вероятности, полная группа событий. Построение ряда распределения и графика функции распределения, вычисление характеристик для заданной случайной величины. Построение выборки, гистограммы, функции распределения непрерывных случайных величин.

    контрольная работа, добавлен 02.04.2018

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).

    учебное пособие, добавлен 16.02.2014

  • Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.

    презентация, добавлен 29.09.2017

  • Изучение статического ряда частот и относительных частот выборки. Расчет оценки математического ожидания, дисперсии и среднеквадратичного отклонения. Закон распределения и вероятность попадания величины в заданный интервал по эмпирической функции.

    реферат, добавлен 11.02.2014

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника. Рассмотрение полной формулы теоремы Пифагора. Математический расчет суммы квадратов длин катетов. Количественные оценки параметров прямоугольного треугольника на плоскости.

    статья, добавлен 26.01.2019

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.

    реферат, добавлен 30.06.2011

  • Описание одного из доказательств теоремы Пифагора. Существующая формула теоремы Пифагора как упрощённый вариант её решения, который можно использовать только для количественной оценки результата. Выведение полной формулы, качественный анализ результата.

    статья, добавлен 03.03.2018

  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие, добавлен 25.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.