Зависимость качества ранжирования поточечных методов от значений таргета
Характеристика метрик для оценки качества ранжирования документов. Анализ основных классических вариантов регрессии. Исследование возможных разновидностей вариации. Особенность взвешенной функции потерь. Суть множественной порядковой классификации.
Подобные документы
Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.
контрольная работа, добавлен 10.07.2016Дисперсионный анализ для линейной регрессии. Остаточная и общая вариации. Оценки дисперсий коэффициентов регрессии. Функция эластичности. Доверительные интервалы для оцененных параметров. Критическое значение статистики Стьюдента. Критерий Фишера.
курсовая работа, добавлен 21.08.2008Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.
контрольная работа, добавлен 23.11.2016Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013- 33. Математическое моделирование стоимости квартир на первичном рынке недвижимости города Волгограда
Суть первичного рынка жилой недвижимости Волгограда. Анализ методик, влияющих на создание стоимости квартир на основе линейных и нелинейных моделей множественной регрессии, полученных методом наименьших квадратов и с использованием квантильной регрессии.
статья, добавлен 03.12.2018 Методика определения метода оценки эффективности информационных технологий в качестве альтернативы в задаче многокритериального принятия управленческого решения. Алгоритм расчета медианы Кемени, которая применяется для поиска группового ранжирования.
статья, добавлен 20.05.2017Анализ оценки надежности выбранного теста с помощью однофакторного дисперсионного анализа. Особенность вычисления суммы квадратов значений всей таблицы. Определение значения межгрупповой и внутригрупповой вариации. Расчет общей и остаточной дисперсии.
контрольная работа, добавлен 05.12.2016- 36. Эконометрика
Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.
курс лекций, добавлен 27.11.2013 Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.
контрольная работа, добавлен 28.04.2016Определение эконометрики и эконометрическое моделирование. Парная регрессия и корреляция. Модель множественной регрессии, оценка ее качества. Системы линейных одновременных уравнений. Факторный, кластерный и дискриминантный статистический анализ.
методичка, добавлен 31.05.2012- 39. Применение метода сводных показателей для оценки качества профессиональной подготовки специалистов
Анализ возможности применения альтернативных методов свёртки для получения сводных оценок качества различных компонентов учебного процесса. Апробация метода свёртки на примерах решения некоторых задач мониторинга качества образовательного процесса.
автореферат, добавлен 01.09.2018 Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.
презентация, добавлен 12.07.2015- 41. Анализ вариации
Основные показатели вариации: размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации. Разность максимального и минимального значений признака. Расчет эмпирического корреляционного отношения. Определение внутригрупповых дисперсий.
контрольная работа, добавлен 25.06.2013 Линейные и нелинейные модели парной регрессии и корреляции. Свойства оценок на основе метода наименьших квадратов. Анализ системы эконометрических уравнений. Характеристика структурной и приведенной форм. Суть автокорреляции уровней временного ряда.
лекция, добавлен 10.06.2014Множественные регрессионные модели. Использование множественной регрессии в решении проблем спроса, изучении доходности акций, изучении функции издержек производства, в макроэкономических расчетах. Выбор вида уравнения регрессии как спецификация модели.
презентация, добавлен 12.07.2015Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
лабораторная работа, добавлен 18.09.2012Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.
контрольная работа, добавлен 01.06.2020Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.
реферат, добавлен 24.12.2011Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Анализ особенностей метода непосредственного ранжирования. Методика проверки межэкспертной согласованности оценок. Вычисление показателя патентной защиты. Порядок определения коэффициентов весомости дефектов технических изделий стоимостным способом.
учебное пособие, добавлен 17.04.2015Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.
презентация, добавлен 02.10.2011Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015