Дифференциальные уравнения
Неопределенные, определенные и несобственные интегралы. Общее решение линейного дифференциального уравнения. Нахождение площади фигуры, ограниченной линиями. Частное решение дифференциального уравнения, удовлетворяющего заданным начальным условиям.
Подобные документы
Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.
курс лекций, добавлен 26.08.2015Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.
контрольная работа, добавлен 16.11.2014Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Решение линейного уравнения вида АХ=В. Схема поиска линейных неравенств Ах>B, Ax(=)B. Аналитический и графический способ решения задач с параметрами. Поиск количества корней данного уравнения х^2-2х-8-а=0 в зависимости от значений параметра а.
презентация, добавлен 17.09.2012Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.
статья, добавлен 21.06.2018Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.
презентация, добавлен 26.10.2013Определение зависимости между перемещениями и деформациями, сущность уравнения Коши и его использование. Условия совместности (неразрывности) деформаций. Рассмотрение дифференциального уравнения равновесия. Расчет напряжения на наклонных площадках.
курсовая работа, добавлен 19.09.2017Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.
задача, добавлен 05.09.2016Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.
презентация, добавлен 17.09.2013Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.
реферат, добавлен 09.11.2017Решение задач на доказательство теоремы о среднем для двойного и тройного интеграла. Построение области интегрирования. Вычисление площади плоской фигуры, ограниченной заданными линиями, и объема тела, ограниченного определенными поверхностями.
контрольная работа, добавлен 09.01.2014Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Получение условий разрешимости краевой задачи для функционально-дифференциального уравнения третьего порядка в случае резонанса. Ядро и образ оператора. Относительный коэффициент сюръективности оператора. Пространство абсолютно непрерывных функций.
статья, добавлен 26.04.2019Основные понятия об обыкновенных дифференциальных уравнениях. Однородные дифференциальные уравнения 1-го порядка с разделяющимися переменными. Обобщенное однородное и линейные дифференциальные уравнения. Уравнение Бернулли и интегрирующий множитель.
контрольная работа, добавлен 28.06.2014Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Исследование нелокальной краевой задачи для смешанного параболо-гиперболического уравнения второго порядка с негладкими условиями сопряжения. Доказательство существования решения данной задачи. Решение интегрального уравнения Фредгольма второго рода.
статья, добавлен 15.05.2017Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.
курсовая работа, добавлен 16.12.2014Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.
лекция, добавлен 14.03.2014Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.
автореферат, добавлен 02.03.2018