Математические парадоксы

Многообразие парадоксов и их причины (парадоксы Греллинга и Бери). Парадоксы как петли (литографии К. Эшера). Абстракции и иерархические языки. Парадоксы, связанные с теорией множеств, открытия Кантора и парадокс Рассела, кризис основ математики.

Подобные документы

  • Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.

    реферат, добавлен 30.10.2010

  • Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.

    методичка, добавлен 08.09.2015

  • Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.

    контрольная работа, добавлен 30.06.2021

  • Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.

    книга, добавлен 06.05.2013

  • Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

    статья, добавлен 24.11.2022

  • Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.

    курс лекций, добавлен 06.12.2015

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.

    методичка, добавлен 15.11.2013

  • Рассмотрение истории возникновения математики, ее роли в физической науке. Изучение основных открытий новаторов Нового времени - Рене Декарта и Галилео Галилея. Различные математические свойства физических тел. Роль индукции и эмпирических методов.

    реферат, добавлен 06.05.2014

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

  • Логические связи и отношения, лежащие в основе логического вывода, с использованием языка математики. Объединение множеств. Аксиома Дедекинда. Понятие супремума. Обратная функция. Геометрическая интерпретация. Монотонная последовательность чисел.

    контрольная работа, добавлен 12.10.2013

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Греки классического периода - родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.

    реферат, добавлен 15.10.2011

  • Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.

    курс лекций, добавлен 28.03.2012

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.

    статья, добавлен 17.07.2018

  • Древнейшие древнеегипетские математические тексты. Папирус Ахмеса или папирус Ринда – наиболее объёмный манускрипт, содержащий 84 математические задачи. Фрагменты вычислительного характера. Древнеегипетская нумерация. Иероглифы для изображения чисел.

    реферат, добавлен 31.05.2017

  • Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.

    курсовая работа, добавлен 20.09.2018

  • Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.

    лекция, добавлен 28.04.2015

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.

    реферат, добавлен 06.07.2009

  • Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.

    статья, добавлен 29.10.2013

  • Зародження математики (з глибокої давнини до VI-V ст. до нашої ери). Розвиток математики до ХVII століття. Характеристика періоду математики змінних величин ХVII-XIX століття. Аналіз періоду сучасної математики. Внески вчених-математиків у розвиток науки.

    реферат, добавлен 23.10.2015

  • История зарождения и распространения математики. Причины перехода человечества от простого подсчета к сложным математическим действиям. Определение связи математики с программированием. Основные особенности специализации разрабатываемого приложения.

    эссе, добавлен 25.04.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.