Дифференцируемость функции нескольких переменных в точке
Дифференцируемость и полный дифференциал в точке. Главная линейная часть и её приращение. Геометрический смысл дифференциала функции нескольких переменных. Производные сложной и неявной функции. Производная в данном направлении и градиент функции.
Подобные документы
Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.
лекция, добавлен 29.09.2013- 27. Неявные функции
Понятие неявных функций, условие их существования и основные разновидности: одного и двух переменных. Сущность дифференцируемости, ее способы определения. Касательная плоскость и нормаль к поверхности. Производная по направлению и описание градиента.
лекция, добавлен 29.09.2013 Введение в математический анализ. Алгоритм вычисления пределов. Раскрытие неопределенностей. Классификация функций. Непрерывность функции в точке. Дифференциальное исчисление функций одной переменной. Определение и геометрический смысл дифференциала.
учебное пособие, добавлен 28.08.2017Определение и графическое изображение области допустимых значений заданной функции. Вычисление частных производных первого порядка, полного приращения и дифференциала функции. Механизма и основные этапы расчета наибольшего и наименьшего значения.
контрольная работа, добавлен 25.02.2016Исследование понятия дифференциала функции, его свойств и геометрического смысла. Изучение теоремы о связи бесконечно малых величин с пределами функций. Определение приращения и дифференциала независимой переменной. Примеры решения задач с производными.
презентация, добавлен 21.09.2013Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.
реферат, добавлен 13.06.2015Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.
курсовая работа, добавлен 16.09.2013Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.
курс лекций, добавлен 15.09.2017Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Разделение понятия дифференциала функции на независимые переменные, разложение дифференциалов независимых переменных равными приращениями. Частные производные высших порядков. Расчет непрерывных частных производных всех порядков от сложных функций.
лекция, добавлен 16.06.2014Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
курсовая работа, добавлен 23.04.2011Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.
реферат, добавлен 26.04.2014Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.
учебное пособие, добавлен 05.04.2011Определение и расчет производной функции. Формулы приращения дифференциала. Геометрический и физический смысл производной и дифференциала. Мгновенная скорость точки в момент времени. Использование дифференциала для приближенных вычислений прироста.
лекция, добавлен 26.01.2014Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.
реферат, добавлен 10.04.2010Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.
контрольная работа, добавлен 27.04.2015Дифференциал суммы, произведения и частного. Абсолютная погрешность приближенной величины. Понятие производной n-го порядка функции. Вывод правила дифференцирования неявных функций. Дифференцирование параметрически заданных функций, пример уравнений.
лекция, добавлен 22.01.2013Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.
шпаргалка, добавлен 12.01.2013Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.
лекция, добавлен 07.07.2015Понятие производной, геометрический и физический смысл. Правила дифференцирования. Производные высших порядков. Приложение производной при исследование функции. Возрастание, убывание, экстремум функции. Применение производной к исследованию функции.
учебное пособие, добавлен 06.06.2010Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Дифференцирование обеих частей уравнения с рассмотрением y как функции от x. Поиск производной функции, заданной уравнением x*х-xy+lny=2. Выражение искомой производной. Алгоритм вычисления производной y'(x) от неявной функции. Иллюстрация примеров.
презентация, добавлен 21.09.2013Определение понятия дифференциала n-го порядка. Исследование основных способов вычисления дифференциалов высших порядков. Нахождение дифференциала высшего порядка функции одной и нескольких переменных. Неинвариантность дифференциалов высшего порядка.
презентация, добавлен 21.09.2013Понятие производной по аналогии с мгновенной скоростью. Предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Скорость изменения функции в заданной точке. Прямолинейное движение материальной точки.
контрольная работа, добавлен 20.02.2017