Теорія ймовірностей
Класичне визначення ймовірності, умовна ймовірність. Зв'язок теорії ймовірностей з теорією множин. Теореми про додавання та множення ймовірностей довільних, несумісних та незалежних подій. Сутність теорем та формул Лапласа, Байєса, Бернуллі, Пуассона.
Подобные документы
Проведення уроку-аналізу тематичної контрольної роботи. Актуалізація опорних знань. Виконання усних вправ на запис суми у вигляді добутку, обчислення суми і знаходження модуля чисел. Формулювання і вивчення правила множення двох чисел з різними знаками.
конспект урока, добавлен 20.09.2018Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Зміст і призначення теорем про збіжність у теорії міри та інтегралу: Єгорова і Лебега про мажоровану збіжність. Концепція про слабку збіжність у банахових просторах. Теорема Рімана про збіжність рядів та її застосування, математичне обґрунтування.
автореферат, добавлен 28.09.2015- 104. Метод потенциалов
Описание разновидностей потенциалов, свойств потенциалов простого и двойного слоя. Постановка и решение краевых задач для уравнений Лапласа и Пуассона в пространстве, их сведение к интегральным уравнениям. Нахождение объемного потенциала однородного шара.
курсовая работа, добавлен 18.12.2016 Обчислення ймовірності події. Знаходження функції розподілу і побудова графіку при заданій дискретній випадковій величині. Обчислення математичного сподівання, дисперсії та середньоквадратичного відхилення при заданій інтегральній функцій розподілу.
контрольная работа, добавлен 17.10.2009Матриця називається квадратною, якщо кількість її рядків співпадає із кількістю стовпців. Нульова матриця. Основні властивості матриць. Додавання та множення матриць. Вектор є частковим випадком матриці. Трансформація матриць, їх практичне використання.
реферат, добавлен 18.12.2008- 107. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017- 111. Основы комбинаторики
Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009 - 112. Велика теорема Ферма
Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.
презентация, добавлен 03.01.2016 Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.
дипломная работа, добавлен 27.09.2012Основні підходи до визначення стійкості криптографічних систем і протоколів у теоретичній криптографії. Забезпечення механізмів класифікації обчислювальних задач як головна мета теорії складності. Криптосистема з відкритим ключем, генерування ключа.
контрольная работа, добавлен 07.02.2011Поняття опуклих множин. Аналіз властивостей допустимої множини задач лінійного програмування. Характеристика небазисних змінних. Особливості застосовування алгоритмів симплекс-методу та Форда-Фалкерсона. Розгляд двоїстих задач та теореми двоїстості.
шпаргалка, добавлен 12.09.2012Тригонометричні відношення сторін в трикутнику. Вивчення геометричної теореми Піфагора. Означення і графіки тригонометричних функцій. Формули додавання кутів фігур. Таблиця значень функцій косинусів і синусів. Перетворення добутків нерівностей на суми.
лекция, добавлен 24.01.2014- 117. Геометричне моделювання розбиття множин при територіальному плануванні в сфері цивільного захисту
Розробка єдиного підходу до формалізації обмежень та їх геометрична інтерпретація в дискретно-неперервних задачах раціонального розбиття множин на підмножини. Методи геометричного моделювання нерегулярного та регулярного раціонального розбиття множин.
автореферат, добавлен 14.09.2015 - 118. Дискретна математика
Розв'язання задач з теорії множин та математичної логіки за допомогою діаграм Ейлера-Вена. Аналіз поняття істинності висловлювань. Визначення характеристик графа, побудова матриці інцидентності. Побудова амплітудно–частотної характеристики сигналу.
контрольная работа, добавлен 20.12.2017 Разработка Лапласом методов математической физики при решении прикладных задач. Развитие теории ошибок и приближений методом наименьших квадратов. Уравнение Лапласа в случае пространственных переменных. Уравнение Лапласа в двумерном пространстве.
реферат, добавлен 22.11.2015Побудова теорії розв’язності і обґрунтування проекційних методів розв’язання СІР та їх систем з ядром Коші та зі зсувом Карлемана. Підрахунок точної кількості лінійно незалежних розв’язків лінійних однорідних СІР зі зсувом Карлемана та їх систем.
автореферат, добавлен 12.07.2014- 121. Дослідження якнайкращих наближень безперервних періодичних функцій тригонометричними поліномами
Прості властивості модулів безперервності. Узагальнення теореми Джексона і нерівності С.Н. Бернштейна. Диференціальні властивості тригонометричних поліномів, що апроксимують задану функцію. Узагальнення зворотних теорем С. Бернштейна і Ш. Валлепуссена.
дипломная работа, добавлен 21.10.2009 Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
реферат, добавлен 25.02.2011Векторний простір (лінійний простір) як безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Абстрактний векторний простір та властивості лінійного простору. Конкретні приклади векторного простору.
реферат, добавлен 08.12.2010Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
лекция, добавлен 08.08.2014- 125. Теория вероятностей
Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.
учебное пособие, добавлен 28.12.2013