Основы математики

Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.

Подобные документы

  • Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).

    реферат, добавлен 07.09.2012

  • Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.

    статья, добавлен 25.07.2018

  • Операции над матрицами, их значение в прикладной математике. Понятие определителя матрицы. Вынесение общего множителя в строке за знак определителя. Вычисление алгебраического дополнения для каждого элемента. Математические модели объектов и процессов.

    контрольная работа, добавлен 23.04.2013

  • Возникновение логики. Элементы математической логики. Операции над логическими функциями. Булевы функции. Преобразование выражений булевых функций. Нахождение исходного выражения по его значениям. Применение в вычислительной технике и информатике.

    реферат, добавлен 14.07.2008

  • Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.

    реферат, добавлен 08.11.2012

  • Нахождение функций принадлежности и представление в виде поэлементных суммы множества. Изображение графически их функций принадлежности. Нахождение аналитического выражения для функции принадлежности объединения множеств; геометрическое представление.

    методичка, добавлен 19.03.2024

  • Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.

    методичка, добавлен 08.09.2015

  • Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.

    презентация, добавлен 11.11.2022

  • Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.

    методичка, добавлен 05.05.2014

  • Эволюция и применение математики в современной науке и технике. Математические начала натуральной философии. Значение трудов Декарта, Ньютона и Галилея. Открытие математических, логических и физических закономерностей. Математика и теория множеств.

    контрольная работа, добавлен 23.03.2010

  • Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.

    методичка, добавлен 17.09.2014

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • Сущность Континуум-Гипотезы Кантора как основы мета-математики ("теории доказательства") и математической логики. Конитивная семантическая визуализация проблемы континуума, его трансляционная фрактальность. Когнитивная визуализация монадологии Лейбница.

    статья, добавлен 17.01.2018

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

  • Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.

    реферат, добавлен 28.10.2018

  • Понятие генеральной и выборочной совокупностей. Эмпирические аналоги функции распределения и плотности распределения, их свойства. Построение гистограммы. Теорема Чебышева. Лемма Бернулли. Точечные оценки параметров генеральной совокупности, их свойства.

    шпаргалка, добавлен 14.06.2013

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

  • Сущность численных методов решения задач на ЭВМ как части вычислительной математики. Процесс классификации задач численных методов. Понятие погрешности как разницы между точным значением величины и известным значением. Метод оптимизации и равных вкладов.

    лекция, добавлен 29.10.2013

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Развитие математической логики. Предмет калькуляции высказываний и ее операции: отрицание и конъюнкция, дизъюнкция, импликация, эквивалентность. Логические формулы и логические элементы компьютера. Функции триггера, сумматора, переключательной схемы.

    реферат, добавлен 21.04.2012

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Особенности контроллеров нечеткой логики как важного применения теории нечетких множеств. Общая структура нечеткого микроконтроллера. Описание лингвистической переменной и функции принадлежности. Принципы работы мобильного робота с нечеткой логикой.

    реферат, добавлен 17.07.2013

  • Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.

    статья, добавлен 13.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.