Операции над событиями
Понятие противоположного события в теории вероятностей. Сумма двух событий А и В равняется событию С, которое состоит из наступления события А или В, или событий А и В вместе. Произведение двух событий А и В, состоящее в одновременном их наступлении.
Подобные документы
Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.
учебное пособие, добавлен 15.01.2014Использование независимых событий в качестве результатов измерений, наблюдений, испытаний, опытов, анализа данных - основа вероятностно-статистических моделей. Установление критерия независимости событий - одна из важнейших задач теории вероятностей.
статья, добавлен 09.11.2020Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.
курсовая работа, добавлен 07.06.2014Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.
учебное пособие, добавлен 15.06.2015Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.
курсовая работа, добавлен 11.06.2020Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.
контрольная работа, добавлен 25.11.2015Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Полная группа равновероятных и несовместных событий. Условные вероятности события. Интегральная теорема Лапласа. Сущность закона распределения дискретной случайной величины. Выборочное уравнение прямой регрессии. Гистограмма относительных частот.
контрольная работа, добавлен 28.03.2014Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.
реферат, добавлен 27.11.2015Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.
контрольная работа, добавлен 28.03.2022Порядок расчета вероятности наступления того или иного события. Составление и исследование функция распределения. Вероятность попадания случайной величины в заданный интервал. Проведение расчетов полной вероятности события, анализ полученных результатов.
контрольная работа, добавлен 30.10.2012Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.
методичка, добавлен 07.10.2015Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.
шпаргалка, добавлен 09.09.2011Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.
контрольная работа, добавлен 30.03.2017Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012Эксперимент как некоторая воспроизводимая совокупность условий, в которых наблюдается то или другое явление, фиксируется тот или другой результат, особенности его проведения, анализа в теории вероятностей. Сравнение степени возможности различных событий.
реферат, добавлен 06.05.2012Вероятность - базовое понятие теории вероятностей – математической науки, предметом исследований которой является изучение свойств вероятностей событий, удовлетворяющих некоторым простым соотношениям. Размышления о случайном. Задача о разделе ставки.
реферат, добавлен 19.08.2015Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
статья, добавлен 29.03.2019Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014