Происхождение арифметической науки и ее роль в развитии общества
Значение арифметики как науки. Изучение действий над целыми и дробными числами, методов решения задач, сводящихся к сложению, вычитанию, умножению и делению. История развития арифметических знаний. Теории великих математиков: Пифагора, Архимеда, Евклида.
Подобные документы
Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.
реферат, добавлен 18.09.2014- 77. Теорема Пифагора
Рассмотрение древней и современной формулировок теоремы Пифагора, ее значение в математике. Изучение алгебраического, геометрического и евклидового доказательств теоремы о равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов.
презентация, добавлен 20.12.2011 Примеры решения задач по теории вероятности. Описание формул, которые применяются для решения таких задач. Построение группы гипотез для решения задач. Функция распределения непрерывной случайной величины. Применение равномерного закона распределения.
курсовая работа, добавлен 07.03.2019Области применения математических методов в специализированных медицинских науках: в экологии, генетике, диагностике, теории эпидемий. Изучение основных метрических единиц и их обозначений. Пример решения и систематизации задач на концентрацию растворов.
контрольная работа, добавлен 10.11.2014История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.
реферат, добавлен 10.11.2010Описание одного из доказательств теоремы Пифагора. Существующая формула теоремы Пифагора как упрощённый вариант её решения, который можно использовать только для количественной оценки результата. Выведение полной формулы, качественный анализ результата.
статья, добавлен 03.03.2018История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.
контрольная работа, добавлен 16.02.2022Число как результат счета и измерения величины. Натуральный ряд чисел, их свойства. Особенности десятичной системы счисления. История развития числа в филогенезе. Этапы знакомства дошкольников с двузначными числами (по методике Е.В. Соловьевой).
контрольная работа, добавлен 14.01.2017Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Новый взгляд на историю возникновения математики как науки. Развития греческой арифметики. Дедуктивное построение предмета. Внутренние математические проблемы. Порядок систематических теорий. Аксиомы как натуральные числа. Доклады Гильберта и Пуанкаре.
учебное пособие, добавлен 28.12.2013Особенность подготовки Василием Ермаковым будущих математиков. Получение звания экстраординарного профессора. Построение Евдоксом Книдским общей теории отношений, основанной на новом определении величины. Характеристика главных трудов Эвклида "Начала".
реферат, добавлен 25.01.2015Качественно-количественная методика оценки реализаций расширенных нечётких арифметических операций по показателю накопления нечёткости. Реализация операций над эталонными треугольными нечёткими числами, оценка нечёткости по лингвистической шкале.
статья, добавлен 27.02.2019Парадокс шахматной доски, необычное доказательство теоремы Пифагора. Покрытие шахматной доски костями домино, характеристика задач на разрезание. Математика шахматных фигур, Значение игры в шахматы в развитии математических способностей человека.
статья, добавлен 14.03.2019Особенности развития прикладного и теоретического направления в развитии математики. История и этапы развития этой науки. Точки зрения на прикладную математику, ее специфика и основные элементы. Классификация математических моделей. Понятие алгоритма.
контрольная работа, добавлен 12.11.2011Понятие криптографии как науки, история становления и развития, место на современном этапе. Значение криптографии в Древнем мире и распространенность ее использования на практике. Описание основных методик криптографии в трудах ученых эпохи Возрождения.
реферат, добавлен 17.03.2010Обоснование роли и значения обратных задач в математическом моделировании. Исследование этапов возникновения и развития теории об арифметических заданиях с известными искомыми величинами. Рассмотрение способов вычисления дифференциальных уравнений.
статья, добавлен 27.03.2016Работа представителей технической науки одновременно со схемами физической и технических теорий и с математическим аппаратом в процедурах расчетно-проектировочной деятельности. Необходимость инженера знать математику для решения задач своей профессии.
реферат, добавлен 26.09.2013Математика как одна из древнейших наук, имеющая дело с числами, количеством и формой, основные этапы и направления ее становления и развития. Выдающиеся математики различных периодов истории, оценка их главных достижений и открытий, значение на сегодня.
презентация, добавлен 15.11.2013Зарождение арифметики и элементарной математики, развитие строительных технологий и геометрии. Создание дифференциального, интегрального исчисления. Изучение основных законов механики. Открытия Пифагора и Ньютона. Развитие математики в современный период.
статья, добавлен 20.07.2018История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
реферат, добавлен 12.07.2020История развития представления человека о числах – одна из ярких сторон становления человеческой культуры. Действия над комплексными числами в алгебраической форме. Комплексное число, сопряженное делителю. Нахождение корней уравнения и дискриминанта.
презентация, добавлен 15.06.2015Деление и история алгебры, происхождение ее термина. Древнейшие сочетания по алгебре, появление от арабов и ее развитие в Европе в эпоху Возрождения. Решение уравнений третей и четвёртой степени. Некоторые математические знаки и даты их возникновения.
реферат, добавлен 27.09.2014Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021Характеристика основных свойств наибольшего общего делителя двух натуральных чисел. Особенность решения диофантова уравнения первой степени. Проведение исследования алгоритма Евклида в школьном курсе математики. Определение наименьшего общего кратного.
дипломная работа, добавлен 23.11.2019