Теории множеств

Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

Подобные документы

  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа, добавлен 29.03.2017

  • Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.

    лекция, добавлен 25.12.2016

  • Этапы разработки программы для решения задачи нахождения наибольшего паросочетания в двудольном графе. Модули программы: характеристика и алгоритмы тестирования. Особенности разработки графического интерфейса с возможностью ввода и вывода информации.

    контрольная работа, добавлен 21.02.2019

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Множество как одно из ключевых понятий математики, в частности, теории множеств и логики. Операции разности и дополнения и их антидистрибутивность относительно операций объединения и пересечения. Множества высших мощностей. Свойства операции объединения.

    реферат, добавлен 20.09.2015

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Изображение декартового произведения множеств на координатной плоскости. Отражение отношения между множествами на кругах Эйлера. Разбиение множества на классы. Операция объединения и операция пересечения множеств. Декартово произведение n-множеств.

    контрольная работа, добавлен 28.04.2016

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.

    курсовая работа, добавлен 29.06.2014

  • Основные понятия теории графов. Представления о планарном графе. Теорема Куратовского и другие характеризации планарности. Эйлеровы и гамильтоновы графы. Расчет количества израсходованного топлива за неделю каждым водителем по справочным данным задачи.

    курсовая работа, добавлен 30.11.2013

  • Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

    статья, добавлен 26.04.2019

  • Рассмотрение примера графа для пояснения логики поиска всех максимальных независимых множеств. Метод генерации всех максимальных независимых множеств графа. Иллюстрация задачи о наименьшем покрытии. Поиск оптимального паросочетания в двудольном графе.

    презентация, добавлен 09.09.2017

  • Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.

    учебное пособие, добавлен 19.12.2012

  • Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.

    лекция, добавлен 07.05.2014

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.

    презентация, добавлен 29.06.2022

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

  • Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.

    презентация, добавлен 31.10.2013

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Основные идеи системной нечеткой интервальной математики. Доказательство теорем, показывающих, что нечеткие множества и результаты операций над ними можно рассматривать как проекции случайных множеств и результатов соответствующих операций над ними.

    статья, добавлен 12.05.2017

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.

    лекция, добавлен 29.09.2013

  • Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.

    лекция, добавлен 30.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.