Способы нахождения корней линейных и квадратичных многочленов
Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
Подобные документы
Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.
реферат, добавлен 31.10.2013Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Сущность метода половинного деления и шагового метода для решения нелинейных уравнений. Примеры решения нелинейных уравнений и определение их корня в программах в Pascal, Microsoft Excel, MathCAD. Анализ результатов и построение соответствующих графиков.
курсовая работа, добавлен 08.06.2014Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.
контрольная работа, добавлен 21.09.2016Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.
курсовая работа, добавлен 23.04.2011Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.
контрольная работа, добавлен 07.05.2009Комбинированный метод как метод уточнения корней нелинейных алгебраических или трансцендентных уравнений. Нахождение интервала с существующим единственным корнем. Сохранение знаков на исследуемом отрезке. Сокращение интервалов путём половинного деления.
отчет по практике, добавлен 14.10.2015Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013- 36. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 Знакомство с основными методами цепных дробей отделения вещественных корней, анализ особенностей. Отделение вещественных корней полиномиального уравнения как важный процесс нахождения вещественных непересекающихся интервалов, общая характеристика.
контрольная работа, добавлен 13.05.2013Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.
контрольная работа, добавлен 06.09.2008Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.
лекция, добавлен 26.03.2012Алгоритм нахождения корня уравнения с помощью численного метода. Геометрическая иллюстрация метода бисекций. Метод половинного деления. Проведение определения является ли функция непрерывной и принимает ли значения противоположных знаков на отрезке.
статья, добавлен 17.02.2019Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.
презентация, добавлен 13.05.2012Точные методы решения систем линейных алгебраических уравнений. Классификация погрешностей, возникающих при решении системы линейных алгебраических уравнений. Метод А.М. Данилевского нахождения канонической формы Фробениуса. Итерационный метод вращений.
курсовая работа, добавлен 11.03.2014Исследование линейного уравнения с двумя переменными. Определение понятия квадратных уравнений. Ознакомление с особенностями уравнений высших степеней сводящиеся к квадратным. Изучение процесса нахождения точек пересечения графика с осями координат.
контрольная работа, добавлен 16.02.2023Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021- 45. Метод Гаусса
Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.
задача, добавлен 24.11.2014 Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Решение линейного уравнения вида АХ=В. Схема поиска линейных неравенств Ах>B, Ax(=)B. Аналитический и графический способ решения задач с параметрами. Поиск количества корней данного уравнения х^2-2х-8-а=0 в зависимости от значений параметра а.
презентация, добавлен 17.09.2012Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.
практическая работа, добавлен 22.10.2019