Распределение по закону геометрической прогрессии
Случайная величина, распределенная по закону геометрической прогрессии с параметром. Серия опытов в одинаковых условиях и независимо друг от друга до того времени, пока не произойдет событие. Математическое ожидание и дисперсия случайной величины.
Подобные документы
- 101. Теория вероятности
Определение вероятности того, что отклонение случайной величины будет не более среднеквадратического. Построение графика плотности распределения и функции распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения.
контрольная работа, добавлен 23.06.2015 Нахождение оценки математического ожидания и дисперсии случайной величины. Характеристика доверительных интервалов для математического ожидания и дисперсии. Оценка вероятности попадания случайной величины в интервал. Особенности построения гистограммы.
задача, добавлен 03.10.2017Построение графиков эмпирической функции распределения и полигона частот исследуемой случайной величины. Вычисление несмещенных оценок математического ожидания и дисперсии. Гипотеза о законе распределения генеральной совокупности с уровнем значимости.
задача, добавлен 24.12.2014Практические примеры проверка статистических гипотез. Распределение эффектов одного фонового шума, суммы полезного сигнала. Плотности распределения, лемма Неймана–Пирсона. Уравнение согласованной фильтрации. Математическое ожидание статистики, дисперсия.
контрольная работа, добавлен 21.10.2017Статистическая обработка выборки реализаций случайной величины, распределенной по геометрическому закону. Построение гистограммы статистического распределения и полигона распределения. Оценка параметров распределения методом наибольшего правдоподобия.
контрольная работа, добавлен 07.08.2013- 106. Теория вероятностей
Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017 Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
реферат, добавлен 05.12.2021Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.
контрольная работа, добавлен 02.03.2017Основные понятия, предмет и методы математической статистики. Сущность выборочного метода (математическое ожидание, медиана, дисперсия), анализ теории вероятности, свойств и взаимосвязи случайных величин, зависимость между известными и переменными.
реферат, добавлен 24.12.2014Основные теоремы о математическом ожидании, числовых характеристиках случайных величин. Вычисление корреляционного момента. Теоремы о дисперсии случайной величины. Теорема о линейной зависимости случайных величин. Определение коэффициента корреляции.
лекция, добавлен 18.03.2014- 111. Двухмерные массивы
Контрольные задачи типового расчета по теории вероятностей и по математической статистике. Схема соединения элементов, образующих цепь с одним входом и одним выходом. "Прямое" сложение и умножение вероятностей. Математическое ожидание и дисперсия.
контрольная работа, добавлен 17.11.2014 Вычисление вероятности того, что телефонный номер не содержит цифры пять; выхода прибора из строя в результате отказа одного из его блоков. Определение математического ожидания, дисперсии, функции распределения случайной величины. Построение ее графика.
контрольная работа, добавлен 13.01.2015Оценки математического ожидания и дисперсии случайной величины. Проверка правдоподобия гипотезы о совпадении выбранного закона распределения с истинным законом при заданном уровне значимости. Построение доверительной области для плотности распределения.
контрольная работа, добавлен 25.10.2017Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.
реферат, добавлен 27.02.2012- 115. Теория вероятности
Определение вероятности выбора разного количества бракованных и не бракованных изделий. Расчет надежности цепи по вероятности последовательной и параллельной работы элементов. Расчеты по интегральной теореме Лапласа. Дисперсия и математическое ожидание.
контрольная работа, добавлен 11.01.2015 Проверка статистической гипотезы о виде неизвестного распределения. Оценка математического ожидания случайной величины. Определение корреляционной зависимости между рядами наблюдений. График эмпирической функции и функции нормального распределения.
контрольная работа, добавлен 23.12.2012Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.
курсовая работа, добавлен 12.09.2014Нахождение оценки математического ожидания и дисперсии случайной величины и вероятности ее попадания в заданный интервал. Определение доверительных интервалов для математического ожидания и дисперсии, соответствующих заданной доверительной вероятности.
практическая работа, добавлен 16.10.2017- 119. Метод Монте-Карло
Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010 Определение вероятности того, что будут сданы два первых экзамена. Вычисление значения функции распределения. Построение многоугольника распределения. Нахождение математического ожидания, дисперсии и среднего квадратического отклонения случайной величины.
контрольная работа, добавлен 26.05.2015- 121. Законы больших чисел
Понятия случайного события и величины. Теорема Пуассона, Ляпунова и Бернулли, утверждающая, что если вероятность события одинакова, то с ростом числа испытаний частота события стремится к вероятности и перестает быть случайной. Закон "безобидных" игр.
реферат, добавлен 30.10.2013 Построение гистограммы относительных частот. Минимальный и максимальный элементы выборки. Оценка математического ожидания (выборочного среднего), дисперсии, моды. Характеристика произвольной случайной величины. Эмпирическая функция распределения.
лабораторная работа, добавлен 27.03.2022Определение размаха варьирования уровня моря. Расчет числа и величины разрядов выборки. Подсчет частот по интервалам. Составление ряда распределения. Построение полигона и гистограммы. Оценка математического ожидания, дисперсии. Проверка критерия Пирсона.
курсовая работа, добавлен 18.10.2017- 124. Случайные величины
Случайная величина – числовая функция, принимающая значения случайным образом. Дискретные распределения. Графическое задание ряда распределения. Смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха. Пуассоновская модель.
презентация, добавлен 27.09.2017 Ознакомление с основными понятиями теории надежности. Исследование вероятности попадания случайной величины. Изучение и анализ особенностей дисперсии и среднего квадратического отклонения. Характеристика законов распределения времени между отказами.
контрольная работа, добавлен 22.03.2018