Векторы. Линейные операции над векторами

Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.

Подобные документы

  • Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.

    курсовая работа, добавлен 17.01.2011

  • Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.

    шпаргалка, добавлен 14.01.2010

  • Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.

    контрольная работа, добавлен 13.05.2014

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.

    лекция, добавлен 29.09.2013

  • Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.

    методичка, добавлен 24.03.2015

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.

    лекция, добавлен 29.09.2013

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

  • Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.

    реферат, добавлен 02.10.2013

  • Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.

    реферат, добавлен 16.05.2016

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

  • Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.

    курсовая работа, добавлен 04.03.2020

  • Викладення векторної алгебри: означення рівного, колінеарного, нульового, одиничного, компланарного та модуля вектора; правило трикутника та паралелограма; різниця та добуток вектора; напрямні косинуси; скалярний, векторний і мішаний добутки векторів.

    лекция, добавлен 30.04.2014

  • Методика построения прямоугольных декартовых координат. Абсцисса как число, выражающее в некотором масштабе расстояние точки от координатной оси. Характеристика основных свойств векторного сложения. Алгоритм смешанного произведения трех векторов.

    презентация, добавлен 31.10.2016

  • Основні поняття векторної алгебри, геометрична модель векторної величини. Лінійні операції з векторами, лінійна залежність та лінійна незалежність системи векторів. Визначення проекції вектора на ось. Прямокутна декартова система координат в просторі.

    лекция, добавлен 11.02.2011

  • Определение касательного вектора к многообразию в произвольной точке. Условия существования непрерывной кривой в трехмерном евклидовом пространстве. Тензоры как важнейший из классов величин, числовая запись которых меняется при изменении координат.

    контрольная работа, добавлен 01.09.2017

  • Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.

    задача, добавлен 31.03.2014

  • Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.

    курс лекций, добавлен 10.11.2013

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Деление отрезка прямой в заданном отношении по средствам построения. Геометрическое определение "золотого сечения". Вывод формул для нахождения координат точки, делящей отрезок в данном отношении. Применение теорем Менелая и Чевы для решения задач.

    курсовая работа, добавлен 18.05.2016

  • Линейная динамическая система. Оценка вектора состояния с помощью уравнения фильтра Калмана и методом расширения. Модель измерений ковариаций. Алгоритм вычисления вектора состояния при взаимно коррелированных шумах. Регуляризованное решение уравнений.

    статья, добавлен 13.06.2015

  • Понятие криволинейных координат точки. Контравариантные и ковариантные компоненты вектора. Ортогональные криволинейные параметры и условия их ортогональности. Определение выражения для скорости и ускорения точки в цилиндрической системе координат.

    учебное пособие, добавлен 28.12.2013

  • Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.

    лекция, добавлен 06.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.