Функциональные пространства
Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
Подобные документы
Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.
контрольная работа, добавлен 15.06.2011Постановка общей задачи линейного программирования. Преобразование ограничения-неравенства исходной задачи линейного программирования. Экономический смысл дополнительных переменных. Минимум целевой функции. Свойства задачи линейного программирования.
лекция, добавлен 28.03.2020Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
лекция, добавлен 29.09.2014Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.
статья, добавлен 29.01.2019Использование графических изображений статистических данных. Рассмотрение понятия векторного пространства. Задача линейного программирования и этапы ее решения графическим методом. Пример решения задачи линейного программирования графическим методом.
курсовая работа, добавлен 12.04.2015Свойства преобразований Лапласа. Дифференцирование и интегрирование оригинала. Теоремы о начальном и конечном значении. Зависимость выходного сигнала системы от времени при подаче на ее вход некоторого типового воздействия. Импульсная переходная функция.
курсовая работа, добавлен 13.03.2014Обучение учащихся и студентов отысканию производной сложной функции. Правила вычисления производных алгебраической суммы функций, произведения и частного функций. Упражнения на применение изученных формул и правил. Дифференцирование сложной функции.
статья, добавлен 18.02.2020Решение дробно-рациональных и импульсных функции. Преобразование Фурье и Лапласа. Операторный метод решения дифференциальных уравнений. Понятие линейного динамического звена и его временные характеристики. Частотные характеристики динамического звена.
курс лекций, добавлен 13.07.2012Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.
статья, добавлен 26.04.2019Определение образа и ядра оператора в векторном пространстве. Доказательство того, что образ и ядро являются подпространствами векторного пространства. Связь между размерностями образа и ядра. Алгоритмы нахождения базисов образа и ядра. Алгоритм Чуркина.
лекция, добавлен 30.03.2017Рассмотрены пространственные структуры на примере математики и в приложениях к модальной логике пространства. многозначность понятия "пространства". На примере анализа структуры топологического пространства вводится понятие близости между частями целого.
статья, добавлен 27.04.2023- 87. Линейная алгебра
Понятие полукольца и кольца, векторного, евклидового и унитарного пространства. Рассмотрение различных видов линейных операторов: обратимых, симметрических, кососимметрических, нормальных, унитарных и ортогональных. Сопряженный и обратный операторы.
курсовая работа, добавлен 16.04.2012 Применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Свойства преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.
статья, добавлен 02.03.2018Изучение линейных операций над свободными векторами (сложение векторов и умножение вектора на число). Линейные операции на множестве. Критерий коллинеарности. Правило треугольника и параллелограмма. Определение векторного пространства. Базис совокупности.
презентация, добавлен 01.09.2015Общий вид и методы решения задач линейного программирования. Практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация. Понятие "двойственных задач линейного программирования".
курсовая работа, добавлен 09.02.2014Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.
реферат, добавлен 06.03.2010Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
курсовая работа, добавлен 27.02.2020Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.
конспект урока, добавлен 16.01.2010Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Получение точных неравенств типа Джексона на классах дифференцируемых функций двух переменных. Исследование оператора обобщенного сдвига в метрике пространства L2,p(R2) с весом Чебышева-Эрмита. Ортонормированная система алгебраических полиномов Эрмита.
статья, добавлен 30.10.2016Множества в векторных пространствах. Продолжение положительных функционалов и операторов. Равномерность и топология метрического пространства. Теорема Жордана и простые картины. Выпуклые функции и сублинейные функционалы, алгебра ограниченных операторов.
монография, добавлен 18.06.2015Выбор оптимальных параметров для касательного и двухчастотного разложений для модельной задачи. Исследование неполных блочных разложений высоких порядков на основе новых представлений для рациональных аппроксимантов, допускающих матричные обобщения.
автореферат, добавлен 27.11.2017- 99. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
курсовая работа, добавлен 23.04.2011