Основы нумерологии

Власть и сила чисел. Нумерология как точная наука и её место в жизни. Четные, нечетные, лунные, магнетические и статичные числа. Закон Пяти Первоэлементов - основа устройства окружающего мира. Число имени - выражение развитой человеческой личности.

Подобные документы

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.

    реферат, добавлен 16.05.2012

  • Сущность и структурные компоненты дидактической игры, ее признаки и правила. История возникновения и особенности славянского алфавитного обозначения чисел. Разработка теории чисел математиками античного мира. Содержание и доказательство теорем Ферма.

    реферат, добавлен 04.04.2013

  • Числа, сравнимые по модулю третьего натурального числа. Краткая характеристика особенностей и недостатков сравнения, сложения, умножения по ненулевому рациональному модулю. Доказательство, что выражение является простым числом. Способы решения уравнений.

    статья, добавлен 03.03.2018

  • Нахождение делителей и кратных чисел. Ознакомление с таблицей простых чисел. Разложение чисел на простые множители. Определение взаимно простых чисел. Правило нахождения наименьшего общего кратного. Сложение и вычитание дробей с разными знаменателями.

    разработка урока, добавлен 29.09.2017

  • Вивчення гніздових стекових генераторів, що обчислюють трансцендентні числа. Розгляд можливості моделей обчислень з різними обмеженнями щодо задання арифметичних функцій, дійсних чисел та дійсних функцій, а також зв’язки між класами дійсних функцій.

    автореферат, добавлен 30.07.2014

  • Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.

    статья, добавлен 26.04.2019

  • История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.

    статья, добавлен 03.09.2011

  • Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.

    статья, добавлен 29.01.2019

  • Система счисления как символический метод представления чисел с помощью письменных знаков, отражающий алгебраическую и арифметическую структуру чисел. Позиционные и непозиционные системы счисления. Позиционное число как сумма степеней основания системы.

    презентация, добавлен 22.01.2013

  • Адитивні проблеми теорії чисел й дільників. Метод оцінок тригонометричних сум. Проблема дільників Титчмарша. Подання натуральних чисел у вигляді суми двох квадратів та єдиність такого подання. Подання натурального числа у вигляді суми чотирьох квадратів.

    курсовая работа, добавлен 09.04.2015

  • Методы построения сопряженных чисел в различных гиперкомплексных числовых системах. Существенные свойства сопряженных чисел, отличие их свойств от сопряженных в комплексной системе. Правило построения сопряженного числа для систем второго порядка.

    статья, добавлен 29.01.2019

  • Краткий экскурс в историю степенной функции. Степенные функции с целым и дробным показателем. Четные положительные показатели. Нечетные отрицательные показатели. Степенные функции с иррациональным показателем. Применение степенной функции человеком.

    презентация, добавлен 17.05.2018

  • Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 15.05.2011

  • Приведены результаты эмпирических исследований составных чисел Мерсенна вида Mp=2p–1. Поставлена следующая задача – определить наименьшие простые делители составных чисел Мерсенна. Показаны примеры использования метода факторизации чисел Мерсенна.

    статья, добавлен 26.01.2020

  • Метод определения и распределения составных и простых чисел, также точное вычисление значения функции пи в интервале от 1 до N. Разработка и анализ эффективности нового алгоритма нахождения распределения простых чисел, условия его использования.

    статья, добавлен 19.05.2017

  • История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.

    статья, добавлен 28.03.2019

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.

    разработка урока, добавлен 20.09.2019

  • Понятие делимости чисел, изучение свойств делимости. Признаки делимости чисел, изучаемые и не изучаемые в школе. Овладение в совершенстве признаками делимости чисел, изучаемых на уроках математики и вне школьной программы. Применение признаков делимости.

    контрольная работа, добавлен 11.10.2021

  • Изучение способов определения числа е, служащего основанием натуральных логарифмов. Анализ доказательства иррациональности, решения дифференциальных уравнений. Обзор многоугольников распределения случайной величины, имеющих закон распределения Пуассона.

    контрольная работа, добавлен 26.10.2011

  • "Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".

    доклад, добавлен 31.01.2018

  • Роль простых чисел в криптографии. Арифметические прогрессии. Комбинации арифметических прогрессий. Система формул арифметических прогрессий. Матрицы чисел. Разности и суммы прогрессий. Члены прогрессий. Таблицы. Бесконечное множество комбинаций.

    доклад, добавлен 25.10.2008

  • Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.

    статья, добавлен 26.01.2019

  • Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.

    курс лекций, добавлен 26.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.