Фундаментальные циклы ориентированного и неориентированного графа
Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.
Подобные документы
- 51. Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
доклад, добавлен 29.12.2014 Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.
статья, добавлен 29.04.2017Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.
контрольная работа, добавлен 29.06.2012Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
курсовая работа, добавлен 21.12.2011Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.
шпаргалка, добавлен 08.09.2013Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
курсовая работа, добавлен 26.11.2014Оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Создание полиномиального алгоритма размещения центра абстрактного математического объекта, при сохранении смежности старых ребер. Анализ вычислительной сложности системы.
статья, добавлен 26.05.2017Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.
реферат, добавлен 13.01.2012Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.
контрольная работа, добавлен 27.08.2013Характеристическое свойство - признак, которым обладает каждый элемент, принадлежащий множеству. Круги Эйлера - особые чертежи, при помощи которых наглядно представляют отношения между множествами. Изображение декартова произведения при помощи графа.
презентация, добавлен 20.12.2015- 63. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.
курсовая работа, добавлен 14.01.2011Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.
статья, добавлен 17.08.2018Методика определения максимального потока автомашин (количество машин в час) для заданной системы автодорог, если пропускные способности дорог заданы в матрице. Построение ориентированного графа. Условия сохранения потока вдоль дуги и на вершинах.
задача, добавлен 25.11.2013Застосування методів оптимізації в нафтопереробній промисловості. Пошук мінімального дерева Штейнера. Аналіз розподілу множини вершин графа на сукупність оболонок та їх сполучення. Розробка програмного забезпечення для розв’язання задачі комівояжера.
статья, добавлен 26.03.2016- 68. Код Харари
Понятие графа в математической теории и информатике, виды и область применения графов. Код Харари, сущность идеи Ф. Харари, основателя теории графов. Нахождение кратчайшего пути во взвешенном графе, восстановление дерева по заданному коду Прюфера.
контрольная работа, добавлен 24.11.2014 - 69. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
методичка, добавлен 29.09.2017 Построение модели транспортной сети в виде графа, с множеством вершин, соответствующих узлам сети, и множеством ребер – участкам дорог. Оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и оценка по остальным критериям.
статья, добавлен 26.05.2017Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.
статья, добавлен 22.05.2017Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
реферат, добавлен 02.10.2019Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.
реферат, добавлен 18.12.2022Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.
контрольная работа, добавлен 27.03.2012Минимизация логической функции с помощью карт Карно. Процесс построения таблицы истинности. Основные временные параметры сетевого графика с детерминированным временем. Определение раннего и позднего срока наступления события. Алгоритм Форда-Фалкерсона.
учебное пособие, добавлен 30.11.2013