Дифференциал функции

Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.

Подобные документы

  • Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.

    контрольная работа, добавлен 16.11.2014

  • Разделение понятия дифференциала функции на независимые переменные, разложение дифференциалов независимых переменных равными приращениями. Частные производные высших порядков. Расчет непрерывных частных производных всех порядков от сложных функций.

    лекция, добавлен 16.06.2014

  • Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.

    реферат, добавлен 26.06.2013

  • Вид дифференциального уравнения, разрешимого относительно старшей производной, его решение (функция у(х), которая обращает его в тождество). Формулировка теоремы Коши, утверждающей существование частного решения системы, ее геометрический смысл.

    презентация, добавлен 17.09.2013

  • Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.

    статья, добавлен 01.10.2015

  • Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.

    презентация, добавлен 21.09.2013

  • Геометрический смысл производной. Определение значения производной для функции и отложение их на оси. Графическое дифференцирование. Признаки существования локальных экстремумов и точек перегиба. Графическая иллюстрация. Недифференцируемая точка функции.

    контрольная работа, добавлен 27.08.2011

  • Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.

    курсовая работа, добавлен 10.11.2010

  • Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.

    лекция, добавлен 29.09.2013

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.

    статья, добавлен 05.12.2018

  • Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.

    контрольная работа, добавлен 11.05.2012

  • Расчет предела функции и ее производной. Понятие дифференциала и неопределенного интеграла. Примеры решения типовых задач по теории вероятностей. Случайные величины и их нормальное распределение. Регрессионный анализ. Проверка статистических гипотез.

    методичка, добавлен 09.03.2015

  • Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.

    контрольная работа, добавлен 18.12.2013

  • Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.

    контрольная работа, добавлен 19.01.2013

  • Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.

    контрольная работа, добавлен 06.02.2012

  • Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

    лекция, добавлен 29.09.2013

  • Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.

    лекция, добавлен 26.01.2014

  • Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.

    контрольная работа, добавлен 26.04.2012

  • Формулировка Великой теоремы Ферма, диофантовое уравнение. Использование методов замены переменных для доказательства теоремы. Решение в целых положительных числах. Условия решения уравнений для четных показателей степени методами элементарной алгебры.

    творческая работа, добавлен 14.02.2011

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.

    контрольная работа, добавлен 10.04.2020

  • Геометрическая интерпретация задачи линейного программирования. Методы исследования и отыскания наибольших и наименьших значений функции, на неизвестные которой наложены линейные ограничения. Условный экстремум функции. Векторная и матричная форма записи.

    реферат, добавлен 23.12.2013

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.