Методы численного интегрирования
Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.
Подобные документы
Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.
контрольная работа, добавлен 23.12.2017Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.
курсовая работа, добавлен 09.10.2014Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.
контрольная работа, добавлен 11.05.2012Особенность вычисления двойного интеграла в декартовой и полярной системе координат. Ограничение области интегрирования сверху и снизу гладкими поверхностями и проектирование на плоскость. Определение объема тела, ограниченного параболическим цилиндром.
презентация, добавлен 27.09.2017Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.
курсовая работа, добавлен 30.10.2010Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.
реферат, добавлен 12.11.2010Определение бэта–функций интегралом Эйлера первого рода. Гамма-функции, определяемые интегралом Эйлера второго рода как удобное средство для вычисления некоторых интегралов. Производная гамма функции и вывод формулы Стирлинга, вычисление интегралов.
реферат, добавлен 30.10.2010Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.
методичка, добавлен 27.08.2017Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.
реферат, добавлен 17.01.2011Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.
контрольная работа, добавлен 03.03.2014Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.
курсовая работа, добавлен 12.11.2011Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.
контрольная работа, добавлен 30.10.2010Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015- 66. Тройной интеграл
Сущность и физический смысл тройного интеграла как предела интегральной суммы, полученной путем разбиения объема на элементарные области. Вычисление повторных интегралов при учете конфигурации области интегрирования в зависимости от системы координат.
практическая работа, добавлен 18.10.2013 Пределы интегрирования в двойном интеграле по данной области. Вычисление двойного интеграла в прямоугольной и полярной системах координат. Вычисление криволинейного интеграла по формуле Грина. Исследование заданных рядов про признакам Даламбера и Коши.
методичка, добавлен 10.11.2014Интегрирование иррациональных выражений и выражений, содержащих тригонометрические функции. Методы интегрирования простейших дробей. Первообразная, неопределенный интеграл и его свойства. Таблица основных формул интегрирования. Формула Ньютона–Лейбница.
лекция, добавлен 29.09.2014Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.
презентация, добавлен 17.09.2013Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.
статья, добавлен 30.09.2020Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.
контрольная работа, добавлен 24.04.2014Характеристика интегральных поверхностей первого и второго рода. Определение и вычисление поверхностного интеграла. Основной подсчет статических моментов плоскости относительно координатных плоскостей. Выражение через параметры подинтегральной функции.
статья, добавлен 12.06.2016Разработка программно-алгоритмической поддержки символьных преобразований и вычислений на основе средств компьютерной алгебры с представлением решений. Апробация программ на известных задачах и применение их для символьно-численного интегрирования.
автореферат, добавлен 27.03.2018Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019