Изучение построений сопряженных элементов в гиперкомплексных числовых системах
Методы построения сопряженных чисел в различных гиперкомплексных числовых системах. Существенные свойства сопряженных чисел, отличие их свойств от сопряженных в комплексной системе. Правило построения сопряженного числа для систем второго порядка.
Подобные документы
Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.
курсовая работа, добавлен 18.05.2016Исследование основных особенностей позиционных и непозиционных систем счисления. Перевод целых десятичных чисел в недесятичную систему счисления. Характеристика операций сложения, вычитания и умножения многозначных чисел в различных системах счисления.
реферат, добавлен 30.11.2016Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.
презентация, добавлен 20.10.2016Запись чисел в римской системе счисления, её недостатки. Сущность и предназначение десятичной системы счисления, использование индийской нумерации. Характеристика работы вычислительных машин. Соответствие чисел, записанных в различных системах счисления.
реферат, добавлен 22.11.2015Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.
статья, добавлен 03.03.2018Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.
курсовая работа, добавлен 14.06.2017Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013- 33. Интеграл Римана
Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.
реферат, добавлен 19.02.2014 Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.
статья, добавлен 26.05.2017Число и сумма делителей данной цифры. Простые числа Мерсенна и их наибольшее известное значение. Определение совершенных и дружественных числовых выражений. Особенность формирования доказательства Евклида. Характеристика графиков и свойств функций.
курсовая работа, добавлен 06.05.2015Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010Нахождение делителей и кратных чисел. Ознакомление с таблицей простых чисел. Разложение чисел на простые множители. Определение взаимно простых чисел. Правило нахождения наименьшего общего кратного. Сложение и вычитание дробей с разными знаменателями.
разработка урока, добавлен 29.09.2017Характеристика прямых методов безусловной минимизации многомерных задач: метода Хука-Дживса, Розенброка, циклического покоординатного спуска, сопряженных направлений Пауэлла. Изучение особенностей метода минимизаций функций по правильному симплексу.
презентация, добавлен 09.07.2015Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
статья, добавлен 03.03.2018Анализ генераторов псевдослучайных чисел, построенных на точках эллиптической кривой. Анализ алгоритмов построения неприводимых многочленов и исследование свойств его корней. Исследование преимущества в скорости для алгоритма псевдослучайных чисел.
статья, добавлен 30.05.2017- 42. Фигурные числа
История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.
реферат, добавлен 17.06.2018 Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.
курс лекций, добавлен 10.06.2015Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.
разработка урока, добавлен 08.06.2019Сплайн интерполяция, ее практическое значение. Определение кубического полинома в промежутке между известными узлами. Расчет параметров кубических интерполяционных сплайнов. Группа сопряженных кубических многочленов, в местах сопряжения которых функция.
презентация, добавлен 26.12.2012Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015- 47. Комплексні числа
Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.
реферат, добавлен 10.01.2009 Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011