Теория оптимального управления
Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.
Подобные документы
Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.
статья, добавлен 27.02.2013Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Идентичность методов решения задач идентификации, возникающих при оценке результатов испытаний сложных динамических систем и задач теории оптимального управления. Математические модели объекта измерений. Идентификация состояния динамической системы.
статья, добавлен 27.05.2018Задачи управления с дискретным временем, исследуемые методом динамического программирования. Метод Беллмана в моделях оптимального управления и транспортного процесса. Численный алгоритм решения уравнения, нахождение оптимальной стратегии управления.
дипломная работа, добавлен 15.09.2018Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Определение регенерирующего процесса и его основные свойства. Экстремальная задача для дробно-линейного интегрального функционала. Утверждение о представлении стационарного стоимостного показателя эффективности управления с нововведенным фактором.
дипломная работа, добавлен 01.12.2019Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.
контрольная работа, добавлен 01.10.2013Реализация математической модели системы автоматизированного управления уровнем грунтовых вод, включая инструментарий мониторинга параметров польдерных систем. Решение обратных задач путем варьирования переменных до совпадения целевого функционала.
статья, добавлен 23.06.2018Исследование двухкритериальной задачи стохастического оптимального управления дивидендной политикой страховой компании с критериями доходности и риска. Аппроксимация Парето-оптимального множества барьерно-пропорциональными стратегиями управления.
статья, добавлен 19.02.2016Знакомство с основными особенностями непрерывного оптимального управления в динамических системах. Общая характеристика прикладной теории оптимального управления. Анализ задачи регулирования линейной динамической системы с квадратичным функционалом.
контрольная работа, добавлен 26.03.2020Основные разделы исчисления высказываний: понятие выводимости, естественного вывода, отношения эквивалентности. Использование аксиоматического метода в построении математических теорий. Полное изложение исчисления высказываний. Понятие выводимости.
методичка, добавлен 31.05.2012- 12. Оптимизация стационарных объектов по обобщенным скалярным критериям при детерминированных сигналах
Характеристика возможных задач оптимизации объекта по точности в зависимости от формы функционала обобщенного скалярного критерия оптимальности. Оптимальное управление объектом по произвольному закону. Методы классического вариационного исчисления.
лекция, добавлен 23.07.2015 Общая и формальная постановка одношаговой задачи оптимального инвестирования в случае, когда разрешены "короткие продажи". Постановка многошаговой задачи оптимизации инвестиционного портфеля с дискретным временем как задачи динамического программирования.
курсовая работа, добавлен 05.08.2018Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Доказательство лемм, позволяющих получить оценки несобственных интегралов вдоль решений фазовой системы. Задача оптимального управления со свободными правыми концами траекторий и специфическими функционалами, связанными с особенностями краевых задач.
статья, добавлен 01.02.2019Понятие кривой постоянной ширины. Симметричная кривая постоянной ширины с закругленными углами. Тела постоянной ширины. Сверло Уаттса, двигатель Ванкеля, грейферный механизм. Способы построения, основные свойства и использование кривых постоянной ширины.
реферат, добавлен 07.12.2012Основные достижения в области методов решения оптимизационных задач. Теоретические основы математического аппарата поиска оптимума. Определение значения принципа максимума и динамического программирования в области задач оптимального управления.
реферат, добавлен 13.06.2019Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Общая задача управления. Функция Гамильтона. Дифференциальные уравнения для фазовых координат. Интерпретация сопряженных переменных. Чувствительность оптимального значения целевого функционала к изменению начального момента времени и фазового состояния.
презентация, добавлен 21.08.2015Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.
презентация, добавлен 07.07.2015Поправки порядков малости к методу D–Morph для поиска оптимального управления квантовой системой в задаче реализации желаемой унитарной эволюции за счет применения полной формы выражения производной от операторной экспоненты, заданной на алгебре Ли.
статья, добавлен 12.05.2018Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012- 23. Декомпозиция дискретной задачи оптимального управления с малым шагом на интегральных многообразиях
Сложности, обусловленные высокой размерностью моделей и наличием нескольких временных масштабов. Алгоритм решения линейного матричного разностного уравнения с малым шагом. Декомпозиция задачи оптимального управления с сингулярными возмущениями.
статья, добавлен 24.07.2018 Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.
презентация, добавлен 21.08.2015Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.
реферат, добавлен 10.05.2009