Нумерологія як окрема наука

Числа, як найнеобхідніший засіб для спілкування. Важливість знання нумерології для вчителів математики. Піфагор - творець багатьох математичних наук. Значення чисел та методи їх дослідження. Шкода від використання нумерології. Цифри парні і непарні.

Подобные документы

  • Період зародження математики як самостійної дисципліни. Математика змінних величин (ХVII-XIX сторіччя). Характеристика періоду сучасної математики, особливості її використання для складання та опрацювання математичних моделей технологічних процесів.

    реферат, добавлен 28.04.2014

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Геометрична алгебра як інтеграційна основа навчання курсу алгебри майбутніх учителів математики. Аналіз різних підходів до використання історії математики. Дослідження розв’язань визначних математичних задач на обчислення коренів алгебраїчних рівнянь.

    статья, добавлен 06.04.2019

  • Понятие "комплексные числа": история их возникновения и роль в процессе развития математики. Действия над двумерными числами и их значение для физики и техники. Процесс расширения понятий этой категории математики от натуральных к действительным.

    реферат, добавлен 07.06.2013

  • Визначення точності рівностей на основі теорії похибок. Округлення сумнівних цифр числа, залишивши вірні знаки (у вузькому розумінні та широкому розумінні. Знаходження граничних абсолютних та відносних похибок чисел, якщо вони мають лише вірні цифри.

    лабораторная работа, добавлен 15.10.2021

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • Алгоритм Евклида — наxождение наибольшего общего делителя двуx целыx чисел делением и вычитанием. Описание алгоритма Решето Эратосфена (нахождения всех простых чисел до некоторого целого числа n). Реализация алгоритмов на разныx языкаx программирования.

    реферат, добавлен 05.12.2022

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Комплексные числа, история открытия. Расширение множества вещественных чисел, образование алгебраически замкнутого поля. Применение КЧ в исследованиях, возможность удобно формулировать математические модели физики, квантовой механики, естественных наук.

    реферат, добавлен 07.09.2010

  • Понятие и содержание числа, этапы его эволюции. Вычислительная техника вавилонян и египтян, их отличия. Пифагор и его школа, учения о числе. Периоды развития математики. Системы счисления в Древней Греции. Способ наименования больших чисел Архимеда.

    шпаргалка, добавлен 22.01.2011

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.

    реферат, добавлен 26.03.2019

  • История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.

    доклад, добавлен 21.10.2011

  • Дитинство Піфагора. Навчання в Мілетській школі. Піфагор приймає посвячення в сан жреця, щоб прилучитися до таємниць єгипетських храмів. Піфагор у персидському полоні. Школа піфагорійців. Наукові здобутки Піфагора в математиці, астрономії, музики.

    реферат, добавлен 06.01.2009

  • Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.

    реферат, добавлен 02.03.2017

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.

    реферат, добавлен 08.06.2010

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.

    статья, добавлен 25.12.2017

  • Встановлення співвідношення між сторонами прямокутного трикутника, доведення зворотного твердження теореми Піфагора. Різноманітні методи доведення з використанням геометричних та математичних функцій, підрахунок гіпотенузи трикутника за даними катетами.

    доклад, добавлен 10.02.2011

  • Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.

    лекция, добавлен 24.01.2014

  • Основна теорема арифметики. Подільність чисел на множині цілих чисел та його властивості. Застосування ланцюгових дробів. Канонічний розклад числа та діофантові рівняння. Системи лінійних конгруенцій, методи розв’язання. Китайська теорема про лишки.

    шпаргалка, добавлен 07.06.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.