Случайные величины
Случайные величины и их классификация, числовые характеристики: математическое ожидание, дисперсия. Статистические гипотезы и способы их проверки: сравнение двух генеральных совокупностей, двух биномиальных распределений, критерий согласия Пирсона.
Подобные документы
История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.
реферат, добавлен 29.12.2020Практические примеры проверка статистических гипотез. Распределение эффектов одного фонового шума, суммы полезного сигнала. Плотности распределения, лемма Неймана–Пирсона. Уравнение согласованной фильтрации. Математическое ожидание статистики, дисперсия.
контрольная работа, добавлен 21.10.2017Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
реферат, добавлен 05.12.2021Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.
лекция, добавлен 25.01.2013- 105. Теория вероятностей
Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.
курс лекций, добавлен 20.12.2012 - 106. Метод Монте-Карло
Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010 Расчет количества невозвратов кредитов и квадратичного отклонения. Дисперсия и среднее квадратичное отклонение случайной величины. Построение гистограммы частот по распределению выборки. Проверка гипотезы о числовом значении математического ожидания.
контрольная работа, добавлен 25.05.2014- 108. Теория вероятностей
Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
учебное пособие, добавлен 25.12.2013 Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
курс лекций, добавлен 23.04.2016- 110. Теория вероятностей
Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018 Расчет предела функции и ее производной. Понятие дифференциала и неопределенного интеграла. Примеры решения типовых задач по теории вероятностей. Случайные величины и их нормальное распределение. Регрессионный анализ. Проверка статистических гипотез.
методичка, добавлен 09.03.2015Аппроксимация распределений и расчет вероятностных характеристик с использованием смешанного семейства распределений Пирсона и Джонсона. Соотношения для вероятностей превышения порога случайной величиной смешанного семейства, выражающиеся через функции.
статья, добавлен 19.05.2018Случай, случайные явления, события, величины, их законы, их свойства и операции над ними. Комплексное изучение истории возникновения, становления и развития теории вероятностей. Два знаменитых вопроса шевалье де Мере. Закон больших чисел в форме Бернулли.
презентация, добавлен 10.02.2020- 114. Теория вероятностей
Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.
контрольная работа, добавлен 10.12.2013 - 115. Случайные величины
Случайная величина – числовая функция, принимающая значения случайным образом. Дискретные распределения. Графическое задание ряда распределения. Смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха. Пуассоновская модель.
презентация, добавлен 27.09.2017 - 116. Случайные величины
Случайная величина – величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно. Дискретные, непрерывные и дискретно-непрерывные (смешанные) данные. Функция распределения вероятностей.
реферат, добавлен 13.01.2014 Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.
курсовая работа, добавлен 21.04.2015Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.
курсовая работа, добавлен 12.09.2014Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.
конспект урока, добавлен 03.02.2018Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.
контрольная работа, добавлен 02.02.2010Запись аналитического выражения и построение графика одномерной плотности вероятности мгновенных значений сообщения. Математическое ожидание, дисперсия и СКО. Передача непрерывного процесса дискретными методами. Определение шага дискретизации по времени.
контрольная работа, добавлен 07.04.2015Основные понятия, предмет и методы математической статистики. Сущность выборочного метода (математическое ожидание, медиана, дисперсия), анализ теории вероятности, свойств и взаимосвязи случайных величин, зависимость между известными и переменными.
реферат, добавлен 24.12.2014Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016- 124. Теория вероятностей
Вероятность качественного изготовления изделий. Распределение дискретной случайной величины. Математическое ожидание и среднее квадратичное отклонение. Рассмотрение закона распределения вероятности. Уравнение линейной среднеквадратической регрессии.
контрольная работа, добавлен 31.10.2015 Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015