Решение задач прогнозирования и распознавания образов с помощью нейронных сетей

Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.

Подобные документы

  • Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

    статья, добавлен 17.07.2013

  • Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

    реферат, добавлен 20.03.2009

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.

    книга, добавлен 09.09.2012

  • Описание задачи и практические приложения задачи распознавания образов. Проблема разделения классов (проблема "исключающего ИЛИ"). Определение отношения XOR как известный пример нелинейной проблемы. Обучение по алгоритму обратного распространения ошибки.

    лекция, добавлен 09.10.2013

  • Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.

    статья, добавлен 06.09.2021

  • Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.

    курсовая работа, добавлен 22.05.2018

  • Понятие "распознавание образов". Особенности разработки математической модели распознавания образов в кибернетике. Общая характеристика задач распознавания образов и их основные типы. Методы и принципы, применяемые в этой сфере вычислительной техники.

    контрольная работа, добавлен 30.07.2018

  • Проблема распознавания кривых линий на сложном фоне шумовых точек и близких соседних кривых. Главные требования к обработке в современных экспериментах. Понятие и особенности эластичных нейронных сетей. Робастные методы оценки параметров и их применение.

    статья, добавлен 08.02.2013

  • Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.

    статья, добавлен 30.06.2020

  • Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.

    статья, добавлен 21.05.2021

  • Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.

    реферат, добавлен 22.03.2019

  • Основные классы задач в распознавании человека по изображению лица. Поиск изображения в больших базах данных, задача контроля доступа. Нейросетевые методы распознавания человека по изображению лица. Архитектура нейронных сетей, разработка алгоритма.

    курсовая работа, добавлен 06.06.2013

  • Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.

    дипломная работа, добавлен 28.10.2019

  • Адресация по содержимому. Создание систем искусственного интеллекта, систем распознавания речевых сигналов и изображений. Расчет весовых коэффициентов и пороговых уровней. Решение задач с помощью сетей Хопфилда. Задача комбинаторной оптимизации.

    презентация, добавлен 16.10.2013

  • Процесс квалиметрико-компетентностной типизации инженерно-технических работников промышленных предприятий. Специфика применения нейронных сетей к решению задач идентификации многопараметрических социальных объектов. Пример формирования нейронной сети.

    статья, добавлен 27.05.2018

  • Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.

    дипломная работа, добавлен 06.06.2015

  • Использование искусственных нейронных сетей для решения большого класса задач обработки информации. Процесс функционирования гибридной радиально-базисной нейронной сети. Обеспечение качества обработки информации в последовательном on-line режиме.

    статья, добавлен 19.06.2018

  • На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.

    статья, добавлен 28.10.2018

  • Прогноз популярности на основе признаков настроения и содержания видео. Способ прогнозирования популярности на основе сверточной сети с долгосрочной памятью. Предсказание славы видеоконтента на основе статистики видеоконтента c помощью нейронной сети.

    дипломная работа, добавлен 19.08.2020

  • Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.

    презентация, добавлен 16.10.2013

  • Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.

    статья, добавлен 17.03.2021

  • Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.

    статья, добавлен 01.03.2019

  • Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.

    статья, добавлен 29.05.2017

  • Изучение работы перцептрона для решения задачи распознавания символов. Выбор и обоснование структуры нейронной сети. Возможность улучшения свойств обобщения путем наращивания ее структуры. Анализ работы перцептрона при распознавании двух, четырех букв.

    статья, добавлен 14.07.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.