Оператор Гаусса стосовно до підсумовування розбіжних степеневих рядів
Принципи підсумовування розбіжних степеневих рядів за допомогою класичного методу розв’язання комплексу лінійних алгебраїчних рівнянь. Обґрунтування доцільності використання оператора усереднення з ядерною функцією Гаусса за межею круга збіжності.
Подобные документы
Дослідження напружено-деформованого стану пластини з коловою межею. Оцінка впливу тріщиноподібних дефектів на міцність пластинчатих елементів конструкції. Розв’язання системи сингулярних інтегральних рівнянь за допомогою методу механічних квадратур.
автореферат, добавлен 29.09.2014- 27. Швидкості збіжності рядів Тейлора і рядів фабера на класах –інтегралів функцій комплексної змінної
Розбиття множини інтегралів типу Коші вздовж замкненої жорданової спрямлюваної кривої Г на підмножини. Швидкість збіжності рядів Тейлора для функцій із заданих класів, її дослідження та головні фактори впливу. Точні порядкові оцінки наближень функцій.
автореферат, добавлен 18.11.2013 - 28. Метод Гаусса
Сутність і зміст методі Гауса, напрямки та сфери його практичного застосування: розв’язання загальної системи лінійних рівнянь, зведення до східчастого виду послідовним застосуванням елементарних перетворень. Зв'язок з розкладанням матриці на множники.
контрольная работа, добавлен 17.06.2015 Пропозиція та обґрунтування схеми наближеного розв’язання крайової задачі за допомогою кубічних сплайнів дефекту два. Дослідження умов для лінійних диференціальних рівнянь із змінним запізненням. Побудова ефективних обчислювальних алгоритмів рішення.
статья, добавлен 25.08.2016Одержання умов збіжності, оцінок швидкості збіжності функціональних випадкових рядів у нормах просторів Орліча та Соболєва. Застосовність методу Фур'є до розв’язання крайової задачі для рівняння гіперболічного типу з випадковими початковими умовами.
автореферат, добавлен 23.11.2013Дослідження питання існування неперервних розв'язків систем лінійних і нелінійних різницевих рівнянь із запізненнями, розробка методу їх побудови. Побудова для систем лінійних рівнянь представлення загального неперервного розв'язку і вивчення структури.
автореферат, добавлен 22.07.2014Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Обгрунтування методу усереднення для нових класів нелінійних ДФР із початковими і крайовими умовами. Побудова ефективних, залежних від малого параметра, оцінок похибки методу усереднення. Дослідження існування та єдиності розв'язку сформульованих задач.
автореферат, добавлен 26.09.2015Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.
курсовая работа, добавлен 02.01.2014Особливість способу розв’язування різницевих рівнянь, що виникають при дискретизації двовимірних крайових задач еліптичного типу. Узагальнення поняття "ітераційні процеси Якобі і Гаусса-Зейделя". Розбиття матриці для застосування комбінованого методу.
статья, добавлен 25.08.2016- 36. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 - 37. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017 - 38. Лінійна алгебра
Викладення основ лінійної алгебри: означення матриці порядку m х n, визначника 2-го та 3-го порядку; правило трикутника; властивості визначників; теорема Лапласа; матриці та дії на ними; системи лінійних алгебраїчних рівнянь; методи Крамера та Гаусса.
лекция, добавлен 30.04.2014 Особливості конструктивного методу розв’язання систем алгебраїчних рівнянь, заданих над полем комплексних чисел. Огляд цього алгоритму як модифікації методу матричної лінеаризації Зворотній аналіз похибок заокруглення для побудованих алгоритмів.
автореферат, добавлен 28.09.2014Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.
автореферат, добавлен 10.08.2014Знаходження умов на коефіцієнти кратних тригонометричних рядів, при виконанні яких ці ряди будуть рядами Фур'є інтегровних функцій. Встановлення оцінок інтегралів від модулів функцій. Знаходження умов збіжності в середньому кратних рядів Фур'є.
автореферат, добавлен 14.09.2015Ряди Тейлора і Маклорейна. Приклади розкладу функцій в ряди. Біномінальні, степеневі, числові ряди. Обчислення означених інтегралів за допомогою рядів. Інтегрування диференціальних рівнянь та обчислення елементарних функцій за допомогою рядів.
отчет по практике, добавлен 02.03.2010Дослідження асимптотичних властивостей розв'язків отриманих нескінченних систем. Основи застосування алгоритму лімітант при чисельних двосторонніх оцінках розв'язків регулярних і квазірегулярних нескінченних систем лінійних алгебраїчних рівнянь.
автореферат, добавлен 20.04.2014Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
статья, добавлен 27.11.2019Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі
курсовая работа, добавлен 30.11.2015Аналіз ефективності застосування кусково-степеневих базисних функцій на прикладі сингулярно збурених задач адвекції–дифузії та адвекції–дифузії–реакції. Результати обчислювальних схем за різних способів вибору параметра кусково-степеневих апроксимацій.
статья, добавлен 30.01.2017Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Обчислення аналітичних оцінок стійкості системи лінійних алгебраїчних рівнянь за допомогою чисел обумовленості матриць. Аналіз абсолютної та відносної похибок розв’язків для збурених моделей. Використання програми Mathcad для створення зворотної матриці.
лабораторная работа, добавлен 31.10.2019Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010