Составление магических квадратов
Развитие способности понимать идеи размещения, сочетания, симметрии, классификации и обобщения посредством построения магических квадратов. Содержание "Теории магических матриц" Чебракова. Сущность метода террас. Организация планирования экспериментов.
Подобные документы
Вектор оценок параметров регрессионного уравнения. Классическая оценка ковариационной матрицы метода наименьших квадратов, оценка параметров. Разработка программного обеспечения. Дисперсия ошибки. Однородные группы наблюдений, формула Стерджесса.
статья, добавлен 02.02.2019Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Подробные описания и другие начальные сведения о наиболее интересных, актуальных и занимательных логических и компьютерных играх и головоломках: магических квадратах, крестиках-ноликах, игре Жизнь и Футбол, полифомах (пентамино), танграммах, лабиринтах.
учебное пособие, добавлен 03.07.2013Анализ традиционного подхода к задаче обработки временного ряда. Обоснование применения рекуррентного варианта метода наименьших квадратов. Характеристика процедуры реализации рекуррентной обработки измерений для случая, когда они заданы нечетко.
статья, добавлен 04.02.2017Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.
дипломная работа, добавлен 10.02.2016Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.
курсовая работа, добавлен 27.09.2011Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.
реферат, добавлен 08.05.2011Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019- 34. Матрицы Адамара
Характеристика матриц Адамара и некоторые их обобщения. Процесс вычисления наибольшего возможного числа положительных слагаемых при раскрытии определителя. Определение основных методов построения вещественных матриц Адамара, их специфика и применение.
статья, добавлен 26.05.2017 Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
контрольная работа, добавлен 25.04.2015Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.
статья, добавлен 22.02.2019Создание программы на языке Паскаль в среде объектно-ориентированного программирования Delphi, что позволяет видеть оптимальное решение и различные виды аппроксимации. Алгоритмы расчетов коэффициентов для различных функций и построения их графиков.
статья, добавлен 20.07.2021Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.
статья, добавлен 14.05.2017Определение интервальных статистических рядов распределения частот, составление эмпирических функций распределения, анализ числовых характеристик выборки. Изучение методики проверки статистических гипотез. Анализ метода наименьших квадратов в статистике.
методичка, добавлен 06.05.2015Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Основы статистической теории машинного обучения. Задачи классификации и регрессии с опорными векторами. Теории обобщения Вапника-Червоненкиса и алгоритмы построения разделяющих гиперплоскостей. Задачи адаптивного прогнозирования в режиме онлайн.
учебное пособие, добавлен 16.06.2013Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.
контрольная работа, добавлен 27.04.2014Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
презентация, добавлен 13.07.2015Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.
дипломная работа, добавлен 07.11.2012Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015