Теория вероятностей и математическая статистика

Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

Подобные документы

  • Разработка методов сбора, описания и анализа экспериментальных результатов наблюдений, массовых случайных явлений. Способы задания класса вероятностей и представления выборки. Запись эмпирической функции распределения. Построение вариационного ряда.

    презентация, добавлен 21.09.2017

  • Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.

    контрольная работа, добавлен 17.03.2015

  • Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.

    учебное пособие, добавлен 18.10.2014

  • Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

    реферат, добавлен 13.03.2017

  • Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.

    доклад, добавлен 21.02.2013

  • Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.

    курс лекций, добавлен 02.09.2016

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Числовые характеристики векторов. Классическое определение вероятности. Случайная величина и функция распределения. Генерирование случайных чисел. Центральная предельная теорема. Выборка и вариационный ряд. Оценка и методы максимального правдоподобия.

    учебное пособие, добавлен 22.01.2015

  • Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.

    реферат, добавлен 18.04.2016

  • Рассмотрение интересных закономерностей в возникновении случайного события. Изучение теорем сложения вероятностей. Как работает закон равномерной плотности вероятности. Приведение примеров случайных величин. Обоснование функции распределения, ее свойства.

    реферат, добавлен 04.02.2010

  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа, добавлен 10.12.2013

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.

    курсовая работа, добавлен 11.06.2020

  • Случайная величина как величина, которая в результате опыта принимает заранее неизвестное численное значение. Непрерывные и дискретные случайные величины. Суммарная вероятность. Расчет различных вероятностей и построение многоугольника распределения.

    презентация, добавлен 01.11.2013

  • Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.

    контрольная работа, добавлен 05.11.2016

  • Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.

    учебное пособие, добавлен 25.11.2013

  • Три типа событий теории вероятностей, классическая вероятностная модель. Закон распределения случайной величины, понятие математического ожидания. Критерии для принятия решений в условиях неопределенности. Решение задач графоаналитическим методом.

    контрольная работа, добавлен 29.11.2014

  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция, добавлен 25.01.2013

  • Создание гистограммы вероятностей распределения Пуассона, графика функции и плотности распределения с определенным параметром. Нахождение выборочного квадратического отклонения. Построение доверительного интервала, покрывающего математическое ожидание.

    творческая работа, добавлен 12.01.2018

  • Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.

    задача, добавлен 24.08.2015

  • Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.

    контрольная работа, добавлен 02.03.2017

  • Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.

    курс лекций, добавлен 21.12.2011

  • Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.

    курсовая работа, добавлен 11.06.2014

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.