Вычисление определенных интегралов методом прямоугольников
Особенность концепций численного интегрирования. Главная характеристика методов левых, правых и средних прямоугольников. Основной анализ оценки абсолютной погрешности. Примеры применения способов при приближенном вычислении определенных интегралов.
Подобные документы
- 101. Высшая математика
Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.
контрольная работа, добавлен 16.04.2010 Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.
контрольная работа, добавлен 19.04.2016Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.
контрольная работа, добавлен 15.05.2014Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.
контрольная работа, добавлен 15.01.2018Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.
реферат, добавлен 17.01.2011Основы вычислительной математики. Задачи численного интегрирования. Интерполяционная формула Лагранжа. Вывод формулы Симпсона, правила Рунге, метод двойного просчета, схема уточнения значений интеграла, процесс Эйтнена. Подсчет погрешности результата.
реферат, добавлен 29.05.2009Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.
контрольная работа, добавлен 07.11.2018Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Анализ средних статистических данных, полученных путем простых и сложных расчетов. Расчет вероятности остатка не распроданных микроволновых печей одной марки. Вычисление вероятной доли определенных изделий из общей массы продукции. Теорема Муавра-Лапласа.
задача, добавлен 09.10.2012Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.
лекция, добавлен 29.09.2014Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
реферат, добавлен 21.03.2023Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Геометрический смысл двумерной интегральной суммы. Сущность непрерывного, кусочно-непрерывного и монотонного интегралов. Назначение процедуры повторного интегрирования. Свойства одномерных сумм Дарбу. Необходимое и достаточное условие интегрируемости.
реферат, добавлен 17.01.2011- 117. Исследование функций
Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012 - 118. Расчет интегралов
Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.
контрольная работа, добавлен 03.03.2014 Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
реферат, добавлен 26.03.2019Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.
контрольная работа, добавлен 20.01.2013Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.
курсовая работа, добавлен 14.06.2022Решение проблемы единственности при идентификации автомата конечным фрагментом поведения. Основная характеристика структуризации следов и введения определенных числовых параметров. Главная особенность решения важнейших задач теории дискретных систем.
статья, добавлен 27.11.2017Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 21.09.2013- 124. Ошибки вычислений
Математическое вычисление массы и плотности детали при известных параметрах ее размеров. Рассмотрение методов формульного определения параметров абсолютной и относительной погрешности при расчете размеров конуса, цилиндра и прямоугольника деталей.
задача, добавлен 19.02.2015 Перестановка порядка интегрирования в силу непрерывности подынтегральной функции и конечности кривых. Оценка интеграла Коши по аналитической кривой. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции.
контрольная работа, добавлен 23.04.2011