Построение нейронной сети
Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
Подобные документы
Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017- 77. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Публикация - один из самых популярных форматов общения в социальной сети. Особенности векторного представления слов в двумерном пространстве. Архитектура рекуррентной нейронной сети. Модерация текста - инструмент борьбы с токсичностью в Интернете.
дипломная работа, добавлен 02.09.2018Рассмотрение задачи фильтрации спама и наиболее распространенных подходов к ее решению в сравнении с методами искусственного интеллекта. Развитие средств защиты от спама. Решение задачи защиты от спама на основе списка адресов, сигнатур, теоремы Байеса.
статья, добавлен 19.05.2018Особенности использования нейросетевых технологий для подавления шума в информационных сигналах. Настройка структуры нейронной сети. Оптимизация весовых коэффициентов, пороговых значений функции активации. Эффективность автоматически сгенерированной сети.
статья, добавлен 19.01.2018- 82. Интелектуальная мультиагентная система сбора и анализа данных для моделей знаний предметных областей
Методы построения мультиагентной системы посредством логической оценки получаемых данных. Построение нейронной сети с нейронами, обладающими памятью и интегральной логикой. Реализация логики на основе генетического алгоритма совершенствования "генов".
статья, добавлен 13.01.2017 - 83. Метод буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети
Разработка метода буферизации. Прогнозирование параметров сетевого трафика. Выбор рационального значения емкости памяти для буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети. Построение нечеткой нейронной сети.
статья, добавлен 14.07.2016 Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Распознавание образов при помощи нейросетевых технологий. Алгоритм обучения сети Хопфилда. Вычисление квадратной матрицы размера для ключевых образов по правилу Хебба. Отсутствие проблем с обучением при наличии априорной информации о классах объектов.
статья, добавлен 08.06.2018Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Решение прямой и обратной задач с помощью многослойной нейронной сети прямой передачи сигнала. Операторы отбора особей в новую популяцию. Нахождение глобального минимума функции одной переменной и двух аргументов с помощью генетических алгоритмов.
курсовая работа, добавлен 21.02.2019Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
презентация, добавлен 16.10.2013Расчет площадей помещений и количества компьютеров. Выбор и обоснование топологии сети. Основные характеристики сетей разных топологии. Выбор и обоснование среды передачи. Расчёт необходимого количества оборудования и кабеля. Расчет корректности сети.
курсовая работа, добавлен 08.11.2014Построение и обучение нейронных сетей, которые смогут обучиться для успешного прохождения компьютерных игр. Эволюционный и генетический алгоритмы обучения нейронной сети. Сравнительный анализ самообучающихся алгоритмов на основе платформы OpenAI.
дипломная работа, добавлен 01.09.2017Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Появление и перспективы использования технологии нейронной стилизации. Типологизация методов машинного обучения для стилизации изображений. Рассмотрение реализации стилизации изображений с помощью машинного и глубокого обучений на языке Python.
статья, добавлен 09.12.2024Проектирование и реализация системы, которая осуществляет процессы создания и взаимодействия группы объектов на примере искусственной нейронной сети Хэмминга. Принципы работы созданной программы и закрепление навыков программирования на языке Delphi.
курсовая работа, добавлен 24.04.2014Анализ подходов адаптивного управления для задач управления объектами с переменной структурой. Описание структуры нейронной сети регулятора. Решение задачи управления и стабилизации вертикальной координаты электромеханической летающей модели вертолета.
статья, добавлен 28.05.2017Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Особенности регулирования технологических процессов на производстве с помощью ПИД регуляторов. Разработка системы управления для существующего контура управления с ПИД-регулятором и алгоритма подстройки его параметров в реальном масштабе времени.
статья, добавлен 02.11.2018Идентификация математических моделей химико-технологических процессов. Минимизация продолжительности нахождения настроечных коэффициентов благодаря использованию нейронной сети для снижения количества этапов поисковых алгоритмов на стадиях идентификации.
статья, добавлен 31.08.2018Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Моделирование задачи многомерной аппроксимации значений критериев и обратной задачи определения входных параметров по заданным значениям критериев с помощью нейронной сети. Алгоритм реализации задачи аппроксимации. Нахождения разложения для критериев.
реферат, добавлен 03.07.2017