Векторы в пространстве

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

Подобные документы

  • Скалярное произведение векторов: определение. Характеристика векторного произведения векторов, его свойства (антиперестановочность множителей, распределительности относительно сложения и пр.). Определение смешанного произведения векторов, примеры задач.

    лекция, добавлен 09.07.2015

  • Розгляд поняття вектора. Основні лінійні операції над векторами. Проекція вектора на вісь. Основні властивості проекцій. Декартова прямокутна система координат. Характеристика напрямних косинусів. Лінійні операції над векторами, заданими проекціями.

    лекция, добавлен 30.10.2014

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.

    лекция, добавлен 23.12.2013

  • Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.

    учебное пособие, добавлен 23.03.2013

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

  • Вектор как одно из фундаментальных понятий современной математики, тензор - его обобщение. Векторы и их применение в жизни человека. Использование скалярного произведения в элементарных и абстрактных областях математики, физики и прикладных наук.

    статья, добавлен 27.02.2019

  • Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.

    курсовая работа, добавлен 15.12.2010

  • Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.

    лекция, добавлен 29.09.2013

  • Исследование достижений Рене Декарта - французского математика и философа. Определение и анализ сущности вектора – направленного отрезка прямой и геометрической абстракции векторной величины. Ознакомление с особенностями декартовой системы координат.

    презентация, добавлен 03.05.2016

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.

    методичка, добавлен 19.09.2015

  • Сущность понятий скалярной и векторной математических величин. Основные свойства операций с векторами. Разложение векторов по ортам. Определение проекции вектора и их свойства. Действия с векторами в координатной форме при условие коллинеарности.

    презентация, добавлен 03.10.2012

  • Часы, или современный взгляд на тригонометрию. Теорема косинусов и синусов. Направленные отрезки и векторы, вычитание и умножение на число. Формула вспомогательного угла, или сложение колебаний равной частоты. Модуль и аргумент комплексного числа.

    учебное пособие, добавлен 28.12.2013

  • Теоретические аспекты обучения координатно-векторному методу обучающихся 10-11 классов. Роль и место координатно-векторного метода в школьном курсе математики. Прямоугольная система координат в пространстве. Векторы в пространстве. Задачи в координатах.

    дипломная работа, добавлен 28.07.2018

  • Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.

    курсовая работа, добавлен 17.01.2011

  • Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.

    лекция, добавлен 06.09.2017

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.

    лекция, добавлен 08.05.2015

  • Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.

    учебное пособие, добавлен 01.04.2013

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.