Численные методы решения нелинейных уравнений

Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

Подобные документы

  • Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.

    контрольная работа, добавлен 26.12.2011

  • Развитие итерационных методов решения систем линейных уравнений, путем разработки итерационного метода с использованием аппарата q-дифференцирования. Проведение вычислительного эксперимента с помощью программного пакета Matlab. Методы решения СЛАУ.

    статья, добавлен 27.07.2017

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • История развития квадратных уравнений. Эволюция подходов к решению Древнего Вавилона, Диофанта, Индии, ал-Хорезми, Европы в 13-17 веках. Краткая характеристика теоремы Виета. Особенности применения различных способов решения квадратных уравнений.

    научная работа, добавлен 16.09.2016

  • Решение задачи о нелинейном колебании эллиптического маятника методом частичной дискретизации нелинейных уравнений. Сравнительный анализ полученных результатов с решением задачи соответствующего малым колебаниям, описывающейся системой линейных уравнений.

    статья, добавлен 21.06.2018

  • Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.

    статья, добавлен 31.05.2013

  • Характеристика итерационных методов для сингулярно возмущенных операторных уравнений Фредгольма. Сущность и задачи нетривиального решения. Процесс получения асимптотического разложения. Описание рекуррентных равенств и их порядок использования.

    контрольная работа, добавлен 10.07.2013

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

  • Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.

    статья, добавлен 29.04.2021

  • Знакомство с принципами и критериями выбора регрессионной модели. Рассмотрение видов закономерностей в лесоводстве и лесной таксации. Особенности математической формы эмпирических моделей связи. Анализ линейных и нелинейных регрессионных уравнений.

    автореферат, добавлен 29.03.2018

  • Анализ сущности и свойств тригонометрических и обратных тригонометрических функций. Характеристика основных методов решения элементарных тригонометрических уравнений, а также примеры решения нестандартных тригонометрических уравнений и неравенств.

    курсовая работа, добавлен 09.11.2017

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.

    статья, добавлен 30.10.2016

  • Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.

    задача, добавлен 28.10.2017

  • Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.

    контрольная работа, добавлен 23.04.2011

  • Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.

    автореферат, добавлен 17.12.2017

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.

    курс лекций, добавлен 19.09.2015

  • Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.

    учебное пособие, добавлен 02.05.2013

  • Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.

    курсовая работа, добавлен 05.06.2014

  • Разработка, программная реализация численного метода решения систем дифференциальных уравнений с произвольными, в том числе нелинейными, граничными условиями на основе методов Бубнова-Галеркина. Исследование устойчивости решений на основе метода Ляпунова.

    автореферат, добавлен 08.02.2018

  • Метод сеток решения уравнений параболического типа, оценка погрешности и сходимость метода сеток. Прогонка решения разностной задачи. Доказательство устойчивости разностной схемы. Разработка программного модуля, описание логики. Пример работы программы.

    курсовая работа, добавлен 25.11.2011

  • Скорость решения задачи по математике - условие быстрого усвоения учебного материала, умение быстро анализировать ситуацию достаточно продуктивно. Характеристика основных методик решений возвратных уравнений, которые применяются в школьной практике.

    статья, добавлен 20.07.2021

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.