Вычисление определенного интеграла методами трапеций и средних прямоугольников
Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.
Подобные документы
Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
контрольная работа, добавлен 10.05.2016Исследование метода приближенного вычисления предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной правой частью. Техника опорных функций многозначных отображений.
статья, добавлен 31.05.2013Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
доклад, добавлен 23.04.2013Использование интегрального исчисления для исследования процессов, происходящих в экономике. Изучение состояния рыночного равновесия. Определение величины потребительского излишка при покупке товара, добавочной выгоды производителя при продаже продукции.
контрольная работа, добавлен 17.09.2013Методика проверки выполнения необходимого признака сходимости числового ряда. Анализ ключевых особенностей разложения функции определенного интеграла в последовательность Маклорена. Порядок расчета необходимого интервала сходимости степенного ряда.
контрольная работа, добавлен 22.05.2018Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.
курс лекций, добавлен 18.04.2016Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.
статья, добавлен 25.10.2016Нахождение определенных интегралов от функций, первообразные которых не выражаются через элементарные функции. Вывод приближенных формул вычисления определенных интегралов. Формула трапеций и формула парабол (Симпсона), абсолютная величина ее погрешности.
реферат, добавлен 08.03.2010Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016- 112. Интеграл Лебега
Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
курсовая работа, добавлен 20.10.2010 Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
доклад, добавлен 02.11.2014Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.
курсовая работа, добавлен 18.03.2015- 116. Высшая математика
Векторная алгебра и кривые второго порядка. Аналитическая геометрия в пространстве. Определенный интеграл и его геометрические приложения. Обобщение понятия определенного интеграла. Функции нескольких переменных. Двойные и несобственные интегралы.
учебное пособие, добавлен 03.10.2012 - 117. Высшая математика
Предел последовательности и функции, бесконечно малые и большие величины, а также их сравнение. Дифференциальное и интегральное исчисление функции одной переменной. Геометрические приложения определенного интеграла. Производная и дифференциал функции.
учебное пособие, добавлен 20.08.2017 Описание средних величин, которые можно применять для анализа данных, измеренных в порядковой шкале, шкалах интервалов и отношений и некоторых других. Особенности применения средних порядковых шкал по Коши и средних арифметических по Колмогорову.
статья, добавлен 19.01.2018Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
учебное пособие, добавлен 28.12.2013- 120. Кратные интегралы
Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.
контрольная работа, добавлен 27.08.2013 Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.
курсовая работа, добавлен 12.11.2011Характеристика предела интегральной суммы функции, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю. Рассмотрение алгоритма вычисления определённого интеграла. Последствия замены переменной в интеграле.
задача, добавлен 22.04.2015Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.
реферат, добавлен 30.11.2023Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.
учебное пособие, добавлен 08.11.2013