Линейные модели парной и множественной регрессии

Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.

Подобные документы

  • Основные понятия и определения эконометрики и эконометрического моделирования. Парная корреляция и регрессия, проверка значимости параметров парной линейной модели. Виды линейной модели множественной регрессии. Системы линейных одновременных уравнений.

    курс лекций, добавлен 26.11.2013

  • Уравнения линейной, гиперболической, степенной и показательной парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка значимости коэффициентов регрессий с помощью критерия Стьюдента и доверительных интервалов.

    контрольная работа, добавлен 24.12.2010

  • Оценка и расчёт значимости коэффициентов уравнения множественной регрессии и корреляции с помощью f-критерия Стьюдента и t-статистики Стьюдента: интерпретация параметров, коэффициентов эластичности и стандартизированных бетта-коэффициентов уравнения.

    реферат, добавлен 08.06.2012

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.

    контрольная работа, добавлен 19.05.2012

  • Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.

    методичка, добавлен 16.05.2016

  • Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.

    задача, добавлен 14.05.2016

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.

    презентация, добавлен 12.07.2015

  • Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.

    контрольная работа, добавлен 30.11.2013

  • Построение поля корреляции. Расчет линейного коэффициента корреляции. Определение параметров уравнения регрессии и интерпретация его результатов. Оценка статистической значимости коэффициентов. Построение доверительного интервала прогнозных значений.

    контрольная работа, добавлен 25.02.2014

  • Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.

    контрольная работа, добавлен 08.03.2015

  • Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.

    курс лекций, добавлен 16.05.2016

  • Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.

    контрольная работа, добавлен 14.06.2011

  • Построение поля корреляции, формулирование гипотезы о форме связи. Расчет параметров уровней линейной парной регрессии. Оценка тесноты связи с помощью показателя линейной парной корреляции. Анализ качества уравнений с помощью средней ошибки аппроксимации.

    контрольная работа, добавлен 10.10.2016

  • Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.

    контрольная работа, добавлен 16.07.2019

  • Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.

    курсовая работа, добавлен 09.06.2015

  • Формулировка вида модели простой (парной) регрессии, исходя из соответствующей теории связи между переменными. Определение величины случайных ошибок. Применение фиктивных переменных для функции спроса. Построение системы линейных одновременных уравнений.

    контрольная работа, добавлен 29.04.2013

  • Оценка качества статистической модели через среднюю ошибку аппроксимации и F-критерий Фишера. Теснота связи для линейного уравнения регрессии. Определение коэффициента множественной корреляции. Построение автокорреляционной функции временного ряда.

    контрольная работа, добавлен 03.06.2014

  • Расчет уравнения парной линейной регрессии зависимости прибыли от производительности труда. Особенность вычисления обобщающего коэффициента эластичности. Калькуляция средней ошибки аппроксимации. Характеристика показателей корреляции и детерминации.

    контрольная работа, добавлен 14.06.2015

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.

    контрольная работа, добавлен 06.04.2015

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.

    задача, добавлен 11.06.2013

  • Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.

    курс лекций, добавлен 10.04.2010

  • Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.

    контрольная работа, добавлен 04.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.