Начала теории множеств

Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

Подобные документы

  • Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.

    реферат, добавлен 12.11.2014

  • Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.

    контрольная работа, добавлен 25.12.2011

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.

    статья, добавлен 26.04.2019

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Теорема Пифагора - фундамент, базис и основа всех математических вычислений, расчетов и многих изобретений. Использование информационных технологий в обучении геометрии. Доказательства, обобщение, области применения результатов теоремы Пифагора.

    реферат, добавлен 04.11.2014

  • Многообразие парадоксов и их причины (парадоксы Греллинга и Бери). Парадоксы как петли (литографии К. Эшера). Абстракции и иерархические языки. Парадоксы, связанные с теорией множеств, открытия Кантора и парадокс Рассела, кризис основ математики.

    реферат, добавлен 29.03.2009

  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат, добавлен 07.11.2015

  • Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

    контрольная работа, добавлен 19.05.2014

  • Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.

    статья, добавлен 26.04.2019

  • Нахождение функций принадлежности и представление в виде поэлементных суммы множества. Изображение графически их функций принадлежности. Нахождение аналитического выражения для функции принадлежности объединения множеств; геометрическое представление.

    методичка, добавлен 19.03.2024

  • Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).

    статья, добавлен 26.04.2019

  • Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).

    презентация, добавлен 21.03.2014

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.

    автореферат, добавлен 19.08.2018

  • Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

    презентация, добавлен 21.09.2017

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Рассмотрение понятия математического доказательства. Проблема обозримости в связи с применением компьютеров в математике. Пример доказательства теоремы о четырех красках. Эпистемология математического доказывания в контексте теоретико-типового подхода.

    статья, добавлен 06.04.2021

  • Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.

    презентация, добавлен 29.10.2017

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.

    презентация, добавлен 29.06.2022

  • Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.

    курс лекций, добавлен 28.03.2012

  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа, добавлен 29.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.