Евклидовы и псевдоевклидовы пространства
Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.
Подобные документы
Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.
курсовая работа, добавлен 15.12.2010Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.
лекция, добавлен 29.09.2013Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.
курс лекций, добавлен 06.08.2015Изучение геометрического смысла смешанного произведения нескольких некомпланарных векторов, лежащих в основании параллелепипеда. Доказательство равенства скалярного произведения, не зависящего от порядка множителей. Обзор свойств линейности равенства.
лекция, добавлен 29.09.2013Сигналы как элементы функциональных пространств. Метрические и линейные пространства. Пространства со скалярным произведением. Разложение сигналов в обобщённый ряд Фуре. Примеры определения нормы и метрики Евклида в декартовой системе координат.
презентация, добавлен 26.09.2017Объяснение эффекта расширения пространства с помощью общей теории относительности и проективной геометрии. Применение корреляции и коллинеации в теории тяготения. Измерение внутренней гауссовой кривизны и гравитации. Свойства темной энергии и Абсолюта.
статья, добавлен 12.05.2018Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.
методичка, добавлен 08.09.2015Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
презентация, добавлен 21.09.2013Определение топологического пространства, классическое определение непрерывности числовой функции. Отображения для любой пары произвольных множеств. Окрестностью точки в топологическом пространстве, предел последовательности точек, топология Зарисского.
контрольная работа, добавлен 10.11.2010Изучение теории римановых пространств. Отождествление противоположных точек сферы в геометрии Римана. Исследование проективных плоскостей и пространства. Характеристика принципа двойственности, который прибавляет изящную симметрию во многие конструкции.
реферат, добавлен 10.09.2012Основные различия между прямоугольной системой координат и ортонормированным базисом. Способы определения коллинеарности векторов плоскости. Характеристика пространственного базиса и аффинной системы координат. Примеры задач по геометрии, их решение.
контрольная работа, добавлен 04.11.2012Связь функциональных операторов с ретрактами и пространствами Дугунджи. Классификация функциональных операторов. Пространства частичных отображений и пространства решений дифференциальных уравнений. Теорема Дугунджи для пространства с фильтрациями.
статья, добавлен 19.10.2016Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.
реферат, добавлен 20.02.2017Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
презентация, добавлен 23.10.2020Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.
курсовая работа, добавлен 16.08.2010Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.
презентация, добавлен 12.10.2012Линия пересечения двух плоскостей. Уравнение прямой, проходящей через заданную точку параллельно данному вектору. Определение угла из скалярного произведения векторов. Изучение условия коллинеарности. Признак перпендикулярности и параллельности прямых.
презентация, добавлен 21.09.2013Рассмотрены пространственные структуры на примере математики и в приложениях к модальной логике пространства. многозначность понятия "пространства". На примере анализа структуры топологического пространства вводится понятие близости между частями целого.
статья, добавлен 27.04.2023Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.
курс лекций, добавлен 08.10.2017Исследование систем, образованных с помощью оператора сдвига в пространстве. Понятие фреймовой последовательности. Системы весовых экспонент. Фреймы сдвигов и их границы. Последовательность вещественных чисел. Изучение скалярного произведения системы.
статья, добавлен 31.05.2013Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.
конспект урока, добавлен 16.01.2010