Математическая логика и теория алгоритмов
Постановка задачи и построение модели алгоритма, описание и доказательство его правильности. Описание переменных программы и расчет вычислительной сложности. Использование одномерного массива размерности, совпадение начального и конечного результата.
Подобные документы
Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.
контрольная работа, добавлен 05.09.2016Математическая логика как формальный математический аппарат, изучающий различные способы логических рассуждений. Рассмотрение теоремы дедукции. Анализ логических операций: конъюнкция, дизъюнкция, отрицание. Особенности проверки правильности рассуждений.
учебное пособие, добавлен 11.12.2012Определения теории графов. Реализация алгоритмов обработки графов в виде машинных процедур. Определение путей в графах. Математическое моделирование графов. Реализация алгоритма Флойда-Уоршелла без вычислительной системы. Оценка сложности алгоритма.
курсовая работа, добавлен 18.10.2024Исследование сложности решения задачи агрегирования данных в многомерных кубах. Характеристика определения вычислительной сложности, анализ ее зависимости от параметров гиперкуба и оценка вычислительной сложности при варьировании этих параметров.
статья, добавлен 18.01.2018Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.
учебное пособие, добавлен 15.01.2016Получение алгоритма решения обратной задачи для оператора Штурма-Лиувилля, определяемого уравнением и краевыми условиями. Доказательство теоремы о существовании и асимптотическом поведении собственных значений. Построение операторов преобразования.
курсовая работа, добавлен 10.11.2017Назначение и функции программы для решения транспортной задачи. Решение и процедура построения потенциального (оптимального) плана. Математическая модель, информационная база задачи. Входная и выходная информация. Описание программы, ее применения.
курсовая работа, добавлен 16.11.2008Основные разделы исчисления высказываний: понятие выводимости, естественного вывода, отношения эквивалентности. Использование аксиоматического метода в построении математических теорий. Полное изложение исчисления высказываний. Понятие выводимости.
методичка, добавлен 31.05.2012Методы разработки алгоритмов. Характеристика особенностей "жадных" алгоритмов. Анализ задачи о выборе заявок. Изучение методов определения правильности алгоритма. Изучение принципов жадного выбора. Жадный алгоритм и динамическое программирование.
реферат, добавлен 23.11.2019Сущность, социальное назначение и функции логики, ее роль в формировании логической культуры человека и значение для людей различных профессий. Характеристика видов аргументирования философской науки, ее законы. Доказательство и его логическая структура.
реферат, добавлен 25.11.2010Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017Описание канонического уравнения эллипсоида в декартовых координатах, совпадающих с осями деформации эллипсоида. Алгоритм формирования точек поверхности эллипсоида. Изучение алгоритма рисования эллипсоида. Описание интерфейса, тестирования программы.
курсовая работа, добавлен 26.01.2017Постановка общей задачи линейного программирования. Преобразование ограничения-неравенства исходной задачи линейного программирования. Экономический смысл дополнительных переменных. Минимум целевой функции. Свойства задачи линейного программирования.
лекция, добавлен 28.03.2020Сущность и формальное определение алгоритма на графах, изобретенного нидерландским ученым Э. Дейкстрой. Принципы использования массивов чисел в простейшей реализации для хранения чисел. Анализ сложности алгоритма и доказательство его корректности.
реферат, добавлен 07.05.2011Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.
курсовая работа, добавлен 23.02.2014Построение модели системы организации маршрутов в транспортной системе с предфрактальных графов. Сравнительный анализ вычислительной сложности предложенного алгоритма с известным алгоритмом Прима. Алгоритм Бета 2 выделения наибольших максимальных цепей.
реферат, добавлен 20.05.2017Описание свойств объясняющих переменных в линейной эконометрической модели. Статистическая информация о реализациях переменной. Вектор и матрица коэффициентов корреляции. Исключение квазинеизменных переменных. Метод показателей информационной ёмкости.
презентация, добавлен 19.01.2015Математический анализ функции одного переменного. Признаки сходимости рядов со знакопостоянными членами. Теория вероятностей и математическая статистика. Построение эмпирической функции распределения. Постановка задачи математического программирования.
учебное пособие, добавлен 11.04.2016Обзор методов решения задачи нахождения собственных значений симметричных матриц большой размерности. было проведено исследование с применением разработанного на языке C++ приложения, а также сделаны выводы о работе алгоритмов. Результаты экспериментов.
дипломная работа, добавлен 24.09.2021Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014- 22. Теория игр
Математическая теория конфликтных ситуаций или теория игр. Назначение - решение задач в условиях неопределенности. Оптимальная стратегия для каждого игрока. Игровые модели, платёжная матрица, нижняя и верхняя цена игры. Задачи линейного программирования.
курсовая работа, добавлен 08.10.2009 Анализ данных с помощью определения структуры кластера. Изучение алгоритма поиска центра Минковского для кластеризации по методу к-средних для различных значений степени. Постановка задачи кластеризации. Описание алгоритма с использованием метрики.
дипломная работа, добавлен 01.12.2019Математическое построение оптимального плана и нахождение экстремального значения его функции. Построение двойственной задачи линейного программирования и её целочисленное решение. Описание области допустимых значений переменных, их максимальные функции.
контрольная работа, добавлен 18.02.2013Определение понятия высказывания. Изучение логических операций и их таблиц истинности. Описание формул логики высказываний, а также их равносильности. Анализ заколов логики высказываний. Описание аксиоматического метода. Примеры решения логических задач.
реферат, добавлен 28.11.2016