Класифікаційні задачі групового аналізу диференціальних рівнянь
Побудова ієрархії вкладених нормалізованих класів нелінійних рівнянь Шрьодінгера у випадку довільної кількості просторових змін. Критерій для визначення закону збереження абелевого накриття у виді потенціального правила збереження вихідної системи.
Подобные документы
Дослідження збіжності атрактора регуляризованої системи до атрактора системи Захарова. Ознайомлення з теоремою існування і єдиності гладких розв'язків системи рівнянь Захарова у випадку одновимірної області. Вивчення гладкості елементів атрактора.
автореферат, добавлен 28.10.2015- 102. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 Встановлення умов коректної локальної і глобальної розв'язності гіперболічної задачі Стефана для систем рівнянь першого порядку з двома незалежними змінними. Визначення умов її існування та єдиності для квазілінійної системи рівнянь у криволінійній смузі.
автореферат, добавлен 23.08.2014Застосування методів ліївських та умовних симетрій для дослідження симетрійних властивостей і знаходження точних розв’язків нелінійних рівнянь та систем, які узагальнюють класичні рівняння Шредінгера, Гамільтона-Якобі, конвекції-дифузії, Нав’є-Стокса.
автореферат, добавлен 06.07.2014Використання методу ітерації для розв'язання систем нелінійних рівнянь. Зміни послідовного наближення x при різних варіантах взаємного розташування графіка і прямої. Положення ітерації при різних значеннях функції та похідної. Умови зациклювання ітерацій.
лекция, добавлен 06.06.2009Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015Умови існування розв’язків задачі Дарбу для гіперболічних диференціальних включень та деяких їх властивостей. Розв’язки інтегро-диференціального включення. Усереднення інтегральних включень Вольтерра. Апроксимація гіперболічних диференціальних включень.
автореферат, добавлен 05.01.2014Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
статья, добавлен 30.01.2017- 109. Сингулярно збурені задачі типу "фільтрація-конвекція-дифузія-масообмін" із урахуванням терморежиму
Формулювання просторової сингулярно збуреної крайової задачі для системи нелінійних рівнянь трикомпонентного конвективно-дифузійного масопереносу розчинних у фільтраційній течії речовин за умов малих дифузії. Аналіз асимптотичного розвинення її розв’язку.
статья, добавлен 29.07.2016 Розробка чисельно-аналітичного методу А.М. Самойленка для оцінки існування та наближеної побудови розв'язків нелінійних систем диференціальних рівнянь. Аналіз можливих періодів розривних циклів лінійних автономних імпульсних систем другого порядку.
автореферат, добавлен 14.07.2015Одержання інтегрального зображення точного аналітичного розв'язку мішаної задачі для системи рівнянь параболічного типу. Аналіз моделювання еволюційного процесу методом гібридного диференціального оператора Бесселя-Лежандра-(Конторовича-Лєбєдєва).
статья, добавлен 04.02.2017- 112. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 Дослідження нових типів систем N-арних інтегральних рівнянь. Двовимірні системи парних та потрійних інтегральних рівнянь з функціями Бесселя. Системи потрійних інтегральних рівнянь з функціями Ватсона. Теореми про умови існування розв’язків цих систем.
автореферат, добавлен 18.11.2013Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Вивчення основних понять i визначень стійкості по Ляпунову. Дослідження стійкості лінійних нестаціонарних систем. Стійкість розв’язку лінійних систем з сталими коефіцієнтами. Критерій Гурвiца. Критерій стійкості автономної системи за першим наближенням.
курсовая работа, добавлен 19.10.2016Розвиток теорії нелінійних еліптичних та параболічних диференціальних рівнянь в перфорованих областях. Розробка варіаційних методів дослідження асимптотичної поведінки крайових задач. Аналіз розподілу неоднорідностей складної неперіодичної структури.
автореферат, добавлен 30.07.2014Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014- 118. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Дослідження теорем метричного характеру про оцінки знизу малих знаменників, які виникли при побудові формальних розв'язків задач. Аналіз задач з інтегральними умовами для рівнянь із частинними похідними зі змінними коефіцієнтами гіперболічного типу.
автореферат, добавлен 30.07.2015- 120. Математичне моделювання нелінійних збурень процесів типу "фільтрація-конвекція-дифузія" з післядією
Етапи моделювання нелінійних диференціальних рівнянь для розрахунку процесів фільтрації в різних середовищах. Розробка математичних дій знаходження послідовних наближень при розв’язанні задач із післядією. Принципи розповсюдження розчинних речовин.
автореферат, добавлен 29.07.2014 Побудова математичних моделей імпедансної, адмітансної, передаючої і гібридних інженерних мереж, нелінійних електричних кіл і багатогалузевої економіки. Теореми існування та єдиності для різних класів сингулярних рівнянь. Умови існування зовнішніх тисків.
автореферат, добавлен 27.09.2014Дослідження трьох моделей із фінансової математики, математичної статистики та економетрики, які побудовано за допомогою процесу дробового броунівського руху. Встановлення безарбітражності ринку у класі самофінансованих стратегій марковського типу.
автореферат, добавлен 22.07.2014Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
лекция, добавлен 26.01.2014Чисельне інтегрування звичайних диференційних рівнянь явними і неявними методами Рунге-Кутта. Вплив значення кроку обчислень на точність і збіжність рішення. Визначення можливості застосування засобів стандартних пакетів для отримання результатів.
лабораторная работа, добавлен 08.05.2015Спеціальні заміни змінних для проведення редукції і ефективного пошуку точних розв'язків нелінійних рівнянь реакції-дифузії, які є узагальненнями симетрійних і умовно-симетрійних анзаців. Частинні розв'язки рівняння Колмогорова–Петровського–Піскунова.
автореферат, добавлен 28.10.2015