Проблема якобиана

Характеристика проблемы якобиана – проблемы алгебры и алгебраической геометрии, сформулированной Келлером в 1939 году. Формулировка проблемы якобиана, анализ современных методов ее решения. Исследование неудавшихся доказательств гипотезы якобиана.

Подобные документы

  • Рассмотрение различных подходов к конструированию распределения, задаваемого алгебраической байесовской сетью. Характеристика и особенности основных подходов к выбору распределения. Специфика алгоритма поиска распределения, случай циклической сети.

    статья, добавлен 15.01.2019

  • Основные понятия геометрии Лобачевского с приведением некоторых примеров теорем неевклидовой геометрии и различные приложения геометрии Лобачевского. Рассмотрение моделей (интерпретаций) данной геометрии, а также моделей Бельтрами, Кэли-Клейна, Пуанкаре.

    курсовая работа, добавлен 22.04.2011

  • Производственная сфера хозяйства и использование математических методов для оценки её эффективности. Межотраслевой баланс производства и применение линейной алгебры в экономике. Графическое отображение закономерностей и расчётф зависимости явлений.

    контрольная работа, добавлен 20.06.2012

  • Рассмотрение необходимого и достаточного условия сходимости. Характеристика матричной записи методов Якоби и Зейделя. Представление итерационного процесса в матричном виде. Анализ итерационных методов решения систем линейных алгебраических решений.

    презентация, добавлен 30.10.2013

  • Алгебраическая иммунность как основное свойство булевых функций, характеризующих способность шифра противостоять алгебраическим атакам. Использование системы компьютерной алгебры Sage для автоматизации процессов нахождения числовых характеристик функции.

    статья, добавлен 02.04.2019

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • "Начала" Евклида как повод для создания новых теорий в области геометрии. Создание и разработка геометрии Лобачевского. Вопрос об исследовании всей структуры системы аксиом как евклидовой геометрии. "Лекции о новой геометрии" Паши и его аксиомы порядка.

    реферат, добавлен 30.10.2010

  • Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.

    дипломная работа, добавлен 31.10.2014

  • Воспитания логической грамотности при обучении математике. Изучение геометрических преобразований как основа преемственности преподавания геометрии. Приближенные вычисления в восьмилетней школе. Пути формирования общего приема изображения проекций фигур.

    статья, добавлен 23.11.2013

  • Изучение школьного курса геометрии на примере раздела "Перпендикулярность прямых и плоскостей". Дидактические возможности использования информационных технологий в процессе обучения геометрии в общеобразовательной школе. Проект "Куб принца Руперта".

    статья, добавлен 18.06.2021

  • Общая характеристика процесса автоматизации решения прикладных измерительных задач. Анализ проблемы соответствия измерительной системы объекту, а также условиям измерения. Знакомство с основными особенностями мобильно-облачной измерительной системы.

    статья, добавлен 10.05.2022

  • Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.

    реферат, добавлен 11.09.2010

  • Методы решения уравнений в странах древнего мира. Решение задач, решаемых уравнениями первой степени. Смысл решения Ахмеса и умножение смешанного числа. Метод одного ложного положения и способ фальшивого правила. Правила решения квадратных уравнений.

    реферат, добавлен 26.09.2011

  • Краткая биографическая справка из жизни Н.И. Лобачевского. История появления геометрии. Модель Пуанкаре, Клейна и интерпретация Бельтрами. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника и круга, длина окружности.

    контрольная работа, добавлен 15.04.2013

  • Характеристика системного анализа как совокупности теоретических и эмпирических положений из области математики, естественных наук и опыта разработки сложных систем, обеспечивающей решение конкретной проблемы. Понятие системы как семантической модели.

    лекция, добавлен 28.03.2020

  • Понятие элементарной суммы и произведения. Множество дизъюнктивных и конъюнктивных нормальных форм для алгебры высказываний. Тождественно-истинная и тождественно-ложная формула. Проблема разрешимости для логики высказываний. Формализация рассуждений.

    презентация, добавлен 17.04.2013

  • Изучение периодов зарождения и становления математики. Проблема счета – первая ключевая проблема античной математики. Анализ проблемы измерения, стимулировавшей развитие математики на стадии ее зарождения. "Математика. Утрата определенности" по М. Клайну.

    реферат, добавлен 06.12.2009

  • Греческая философия и математика. Возрождение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и развитие философии математики в XIX в. Философия в сфере математики, способствующая выработке математического знания.

    реферат, добавлен 08.09.2010

  • Методологические основы и задачи многокритериального выбора. Построение формальной модели с использованием информационно-потребностной теории эмоций. Анализ матрицы парных сравнений для выявления лидирующего по полезности варианта решения проблемы.

    статья, добавлен 15.06.2018

  • Развитие новых идей и методов в математике. Определения, изложенные в "Началах" Евклида. Аксиома о свойствах прямоугольного треугольника. Критика евклидовского обоснования геометрии. Основоположники неевклидовой геометрии. Идеи Лобачевского и Бояй.

    реферат, добавлен 20.11.2010

  • Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.

    книга, добавлен 28.03.2013

  • Основные понятия алгебры логики. Операции булевой алгебры. Построение таблиц истинности и булевых выражений. Законы и соотношения булевой алгебры. Преобразование и упрощение булевых выражений методами непосредственных преобразований и карт Карно.

    курсовая работа, добавлен 26.06.2014

  • Сущность Континуум-Гипотезы Кантора как основы мета-математики ("теории доказательства") и математической логики. Конитивная семантическая визуализация проблемы континуума, его трансляционная фрактальность. Когнитивная визуализация монадологии Лейбница.

    статья, добавлен 17.01.2018

  • Рассмотрение становления геометрической алгебры в Древней Греции, ее применения при решении уравнений, доказательстве алгебраических тождеств, при построении фигур. Влияние геометрической алгебры на разрешение математических проблем в арабских странах.

    статья, добавлен 26.04.2019

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.