Принцип максимума Понтрягина
Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.
Подобные документы
Основы информационных технологий на базе ПЭВМ. Методики и примеры оптимального планирования и обработки экспериментальных данных, линейного программирования технологических задач. Воспроизводимость и рандомизация опытов. Методы нахождения оптимума.
курс лекций, добавлен 01.04.2015Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Аналіз послідовно-паралельних процесів моделі оптимального упорядкування дворівневої системи з кількома неідентичними машинами другого рівня. Розв’язання задач обчислювальної схеми побудови локальних оптимальних рішень для підматриць матриці призначень.
автореферат, добавлен 25.06.2014Решение задачи симплекс-методом. Составление экономико-математической модели задачи. Определение вероятности выхода из строя узла. Вычисление общего интеграла дифференциального уравнения первого порядка. Определение области сходимости степенного ряда.
контрольная работа, добавлен 09.06.2012Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
курсовая работа, добавлен 14.06.2011Принцип включений-исключений - важный комбинаторный приём, позволяющий подсчитывать размер каких-либо множеств или вычислять вероятность сложных событий. Специфические особенности формулировки данного математического закона с помощью диаграмм Венна.
курсовая работа, добавлен 08.04.2016Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.
лекция, добавлен 06.09.2017Примеры оптимизации унимодальной функции. Решение конечномерной экстремальной задачи методом выпуклого программирования. Оптимальное распределение однородных ресурсов. Решение задачи управления запасами при удовлетворенном и неудовлетворенном спросе.
курсовая работа, добавлен 11.12.2016Построение математической модели объекта управления в пространстве состояния. Определение спектральной плотности белого шума с помощью корреляционной функции. Эквивалентная схема объекта управления. Составление структурной схемы и сигнального графа.
курсовая работа, добавлен 11.03.2012Изучение существующих математических методов оптимизации нелинейных стохастических систем. Обоснование возможности получения единой методики поиска оптимального управления систем, описываемых стохастическими дифференциально-разностными уравнениями.
автореферат, добавлен 28.03.2018Построение интеллектуальных экспертных диагностических систем на основе четкой и нечеткой информации для диагностики сложных турбоэнергоустановок. Разработка модели и методов нечеткой идентификации, оптимизации и оптимального управления турбоустановки.
автореферат, добавлен 14.02.2018Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.
дипломная работа, добавлен 21.04.2023Определения, обозначения и конкретные случаи размеченных областей. Примеры ориентированных размеченных областей, построенных с применением гармонических функций. Линейное сингулярно возмущенное обыкновенное дифференциальное уравнение первого порядка.
статья, добавлен 11.11.2018Умение решать задачи. Психологические исследования проблемы обучения решению задач. можно ли научиться решать любые задачи. Практические и математические задачи. Правила для стандартных задач, как искать план решения задачи и процесс ее решения.
реферат, добавлен 26.09.2008Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Математическое моделирование реального объекта в виде дифференциального уравнения линейного инерционного звена и передаточной функции. Операторно-структурное описание сигнала. Построение переходной характеристики устойчивого звена первого порядка.
реферат, добавлен 13.01.2014Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
автореферат, добавлен 17.12.2017Понятие и классификация задач затрат, их разновидности и методика решения, исследование количественной части. Правила двойственного соответствия. Задачи выпуска и равновесия, их физическое содержание. Каноническая пара задач. Табличное представление.
контрольная работа, добавлен 22.05.2013Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Решение дифференциального уравнения первого порядка и первого порядка с разделяющимися переменными. Динамические модели в экономике: модели Эванса и Солоу. Однородные и линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 08.02.2011Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.
статья, добавлен 29.01.2019Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.
презентация, добавлен 17.09.2013Вид уравнения Риккати при произвольном дробно-линейном математическом преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для нее.
курсовая работа, добавлен 11.04.2014Динамическое программирование при разработке правил управления запасами, распределении ресурсов между проектами, планировании ремонта оборудования. Принцип оптимальности и уравнение Беллмана. Создание проекта с помощью методов сетевого моделирования.
контрольная работа, добавлен 23.04.2015