Циклы. Эйлеровы графы

Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.

Подобные документы

  • Развитие теории графов, их применение в различных отраслях научного знания. Понятие, определение и изображение графа, системы связей между объектами. Описание структуры графов. Разработка программы для определения сильных компонент графа, баз и антибаз.

    курсовая работа, добавлен 24.04.2011

  • История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.

    презентация, добавлен 15.10.2016

  • Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.

    презентация, добавлен 09.12.2014

  • Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.

    презентация, добавлен 26.07.2015

  • Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.

    статья, добавлен 17.08.2018

  • Основные понятия и определения теории графов. Представление графов с помощью матриц. Задача о максимальном потоке. Алгоритм решения задачи о максимальном потоке. Графы со многими источниками и стоками. Автоматизация поиска максимальных потоков в сетях.

    дипломная работа, добавлен 27.02.2020

  • Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.

    статья, добавлен 26.01.2019

  • Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.

    контрольная работа, добавлен 29.01.2014

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Создание полиномиального алгоритма размещения центра абстрактного математического объекта, при сохранении смежности старых ребер. Анализ вычислительной сложности системы.

    статья, добавлен 26.05.2017

  • Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.

    курсовая работа, добавлен 28.05.2019

  • Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.

    контрольная работа, добавлен 29.08.2010

  • Неориентированные и ориентированные графы, основные понятия и теории. Задача о максимальном потоке в сети. Приложения теоремы о потоках. Теория автоматов, операции над языками. Критерий распознаваемости и нераспознаваемости языка конечным автоматом.

    учебное пособие, добавлен 25.12.2011

  • История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.

    курсовая работа, добавлен 29.01.2010

  • Графічне зображення графа та інші способи його представлення, відношення інцидентності. Дослідження оптимального шляху графа. Проведення синтезу графа, визначення ваги ребер та індексів вершин, що має задану структуру та заданий оптимальний шлях.

    лабораторная работа, добавлен 06.06.2015

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Доказательство теоремы существования и единственности решения аналога задачи Франкля для уравнения смешанного параболо-гиперболического типа третьего порядка. Представление теоремы об однозначной разрешимости нелокальной внутренне-краевой задачи.

    автореферат, добавлен 27.03.2018

  • Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.

    контрольная работа, добавлен 24.04.2011

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • Рассмотрение многомерных фигур, от одномерного отрезка до шестимерного хексеракта. Анализ топологических характеристик многомерных фигур и закономерностей. Формула нахождения количества ребер фигуры, ее сравнение с теоремой Эйлера для многогранников.

    статья, добавлен 03.08.2021

  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа, добавлен 03.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.