Теория симметрических многочленов

Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.

Подобные документы

  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция, добавлен 11.02.2010

  • Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.

    методичка, добавлен 08.09.2015

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.

    презентация, добавлен 19.12.2013

  • Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

    презентация, добавлен 21.09.2017

  • Открытие теоремы Пифагором. Легенда о заклании быков Пифагором. Некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Биография Пифагора. Древнекитайское, древнеиндийское, а также алгебраические доказательства теоремы.

    реферат, добавлен 14.12.2012

  • Узкая и широкая формулировка теоремы Ферма. Опровержение гипотезы Эйлера и открытой гипотезы Ландера-Паркина-Селфриджа. Проблема доказательства теоремы Ферма. Теорема Ферма в культуре и искусстве. Рассмотрение проектов доказательств теоремы Ферма.

    реферат, добавлен 12.01.2020

  • Основное утверждение и средства к доказательству первой и второй частей Великой теоремы Ферма, общее замечание к ней. Решение основного утверждения в первой части и гипотетическое доказательство для второй части, полученные элементарным методом.

    статья, добавлен 01.12.2010

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Понятие абстрактной группы. Свойства алгебраических операций. Реализация абстрактной группы как группы преобразований. Доказательство теоремы Коши, Лагранжа. Теорема о подгруппах конечной циклической группы. Смежные классы, классы сопряженных элементов.

    реферат, добавлен 24.06.2010

  • Доказательство гипотезы Биля, обобщения теоремы Ферма, как неопределенного уравнения, не имеющего решения в целых положительных числах, методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных.

    статья, добавлен 28.05.2009

  • Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".

    автореферат, добавлен 12.05.2018

  • Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.

    реферат, добавлен 19.07.2016

  • Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.

    учебное пособие, добавлен 08.11.2013

  • Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.

    курсовая работа, добавлен 28.05.2014

  • Знакомств с краткой биографией Р. Декарта. Особенности создания аналитической геометрии. Рассмотрение методов решения алгебраических уравнений. Анализ доказательства существования Бога от Р. Декарта. Общая характеристика книги "Рассуждение о методе".

    курсовая работа, добавлен 03.05.2021

  • Доказательство теоремы о 5-ом постулате Евклида как следствия его первых трех постулатов с использованием доводов, имеющих форму доказательства от противного, методом доведения до абсурда. Сферическое пространство Римана и плоскости Лобачевского.

    статья, добавлен 29.08.2016

  • Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.

    курсовая работа, добавлен 19.06.2012

  • Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.

    курсовая работа, добавлен 23.10.2017

  • Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.

    реферат, добавлен 30.03.2017

  • Рассмотрение древней и современной формулировок теоремы Пифагора, ее значение в математике. Изучение алгебраического, геометрического и евклидового доказательств теоремы о равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов.

    презентация, добавлен 20.12.2011

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Получение двусторонних оценок предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной частью. Доказательство теоремы существования предела максимального среднего.

    статья, добавлен 31.05.2013

  • Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.

    презентация, добавлен 18.12.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.