Логические доказательства в математике

Математические предложения и их доказательства в курсе геометрии основной школы. Индукция и дедукция как основные приемы обоснования математических предложений. Воспитание потребности в логическом доказательстве. Методика изучения конкретной теоремы.

Подобные документы

  • Исследование соотношения концепций понимания и доказательства в математической практике. Эпистемические требования при передоказательстве теоремы. Интерпретация вхождения семантического содержания в синтаксические структуры. Примёмы дедуктивного вывода.

    статья, добавлен 23.09.2020

  • Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.

    контрольная работа, добавлен 24.11.2012

  • Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.

    учебное пособие, добавлен 25.11.2013

  • Систематизация и объединение знаний по геометрии. Основные теоремы об описанной и вписанной окружности, их доказательства. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности и решение с их помощью задач.

    реферат, добавлен 30.10.2010

  • Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.

    методичка, добавлен 30.01.2016

  • Рассмотрение теоремы Евклида. Исследование геометрического способа доказательства формулы древнегреческим учёным, живущим в Александрии в III веке до н.э. Определение площади квадрата, построенного на всём отрезке, если отрезок как либо разбит на два.

    презентация, добавлен 14.03.2016

  • Методика определения переносного ускорения, показатели и коэффициенты, используемые для его описания. Порядок вывода и доказательства теоремы Кориолиса. Расчет абсолютного ускорения. Матричная форма исследуемой теоремы в подвижной системе координат.

    лекция, добавлен 15.03.2015

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.

    презентация, добавлен 10.04.2013

  • Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.

    реферат, добавлен 18.04.2015

  • Характеристика основной теоремы арифметики и ее роли. Рассмотрение различных колец, в которых она выполняется. Идея изучения математических объектов путем факторизации (разбиения) их на более простые математические объекты. Решение диофантовых уравнений.

    статья, добавлен 20.05.2017

  • Рассмотрение различных способов доказательства теоремы Пифагора. Характеристика математической книги Чу-пей, ее распространение в Китае. Работы Кантора - крупнейшего немецкого историка математики. Особенности геометрии у индусов, ее связь с культом.

    реферат, добавлен 17.05.2016

  • Место теоремы Пифагора в школьном курсе геометрии. Прямоугольный треугольник и его особенные свойства. Расчет катетов и гипотенузы. Квадрат, построенный на гипотенузе прямоугольного треугольника. Рассмотрение некоторых доказательств теоремы Пифагора.

    статья, добавлен 05.05.2019

  • Классификация методов обучения, применяемых на занятиях геометрии. Основные средства и приемы формирования практических умений и навыков при обучении геометрии на 2 курсе колледжа. Динамика развития экспериментальной работы и оценка результатов.

    курсовая работа, добавлен 13.06.2015

  • Определение общего содержания и описание элементарного доказательства Великой теоремы Ферма с использованием малой теоремы Ферма и метода клонирования уравнений. Доказательство справедливости Великой теоремы Ферма для разных значений показателя степени.

    задача, добавлен 18.05.2012

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Формулы Абеля для Случая I и II Великой теоремы. План предметного доказательства Основного утверждения. Прототип Великой теоремы к части А и В. Внушительный текущий результат по элементарному доказательству Великой теоремы, новизна в подходе к проблеме.

    книга, добавлен 01.12.2010

  • Знакомств с краткой биографией Р. Декарта. Особенности создания аналитической геометрии. Рассмотрение методов решения алгебраических уравнений. Анализ доказательства существования Бога от Р. Декарта. Общая характеристика книги "Рассуждение о методе".

    курсовая работа, добавлен 03.05.2021

  • История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.

    реферат, добавлен 10.11.2010

  • Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.

    дипломная работа, добавлен 22.04.2011

  • Попытки доказательства V постулата Евклида. Кант об априорных понятиях. Теория И. Канта о человеческом познании. Появление неевклидовой геометрии. Янош Бояи, геометрия Лобачевского. Непротиворечивость геометрии Лобачевского. Развитие евклидовой геометрии.

    реферат, добавлен 03.05.2019

  • Исторические вехи становления аксиоматического метода и его роль в развитии математического образования. Интерес к методам научного познания, к природе математических понятий и аксиом и логике доказательства. Дискуссии о дискурсивном и интуитивном знании.

    статья, добавлен 16.03.2019

  • Сущность аксиомы как положения, принимаемого без логического доказательства в силу непосредственной убедительности. Аксиомы геометрии: история и ученые-разработчики. Общепринятый аксиоматический метод в математике и его понятие за пределами математики.

    доклад, добавлен 04.12.2008

  • Биографические сведения о Леонарде Эйлере - идеальном математике XVIII в. Понятие прямой Эйлера как прямой с ортоцентром, центроидом и центром описанной окружности треугольника. Доказательства теоремы о многогранниках. Теория графов и задача Эйлера.

    презентация, добавлен 28.01.2013

  • Узкая и широкая формулировка теоремы Ферма. Опровержение гипотезы Эйлера и открытой гипотезы Ландера-Паркина-Селфриджа. Проблема доказательства теоремы Ферма. Теорема Ферма в культуре и искусстве. Рассмотрение проектов доказательств теоремы Ферма.

    реферат, добавлен 12.01.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.