Аналитические функции комплексного переменного с параметрами
Характеристика аналитических функций комплексной переменной с малыми параметрами, порождаемыми некоторыми операторами. Исследование асимптотического поведения функции. Особенности решения задачи с использованием линии уровня гармонических функции.
Подобные документы
Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.
контрольная работа, добавлен 16.01.2015Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.
учебное пособие, добавлен 10.04.2015Изучение интегральных представлений Сонина, его аналитических свойств, разложение в ряд цилиндрической функции, рекуррентные соотношения и производящей функции. Функции Ханкеля, Вебера, функции мнимого аргумента, связь между цилиндрическими функциями.
курсовая работа, добавлен 23.04.2011Рассмотрение современных учебников алгебры и начал математического анализа 9 класса. Рассмотрение основных видов системы уравнений и неравенств, содержащих параметр. Характеристика аналитического и графического методов решения задач с параметрами.
дипломная работа, добавлен 09.08.2018Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.
курсовая работа, добавлен 30.03.2015Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.
статья, добавлен 25.12.2017Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.
контрольная работа, добавлен 10.04.2020Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.
лекция, добавлен 26.01.2014- 34. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.
курс лекций, добавлен 28.06.2014Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Метод упрощения решения дифференциального уравнения, определяющего такие нелинейные функции от гиперкомплексного переменного как гиперболические и тригонометрические. Введение фиктивных переменных. Закон композиции гиперкомплексной числовой системы.
статья, добавлен 29.01.2019Уравнение с параметрами как математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Алгоритм решения уравнения с параметром. Задачи с линейным, квадратным, дробно–рациональным уравнением с ответами.
реферат, добавлен 19.11.2011Определение и экономический смысл производной. Построение касательной к графику функции. Сущность дифференцируемости и эластичности функции. Правила Лопиталя. Приближенные вычисления производной сложной и обратной функций. Таблица значений производных.
реферат, добавлен 17.01.2011Характеристика функций и графиков функций: определения и понятия. Функции и их свойства: линейная, обратной пропорциональности, квадратичная, степенные. Движение функций по осям координат. Влияние модуля на функции: модуль и обратная пропорциональность.
реферат, добавлен 15.08.2014- 41. Функции
Изучение понятия и видов функций, под которыми понимают зависимость одной переменной величины от другой. График функции. Числовая, убывающая, возрастающая функция. Область определения. Непрерывная функция - функция без "скачков". Примеры четности функций.
презентация, добавлен 16.11.2015 Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.
курсовая работа, добавлен 12.01.2021Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013Понятие о производной функции в точке, ее физический и геометрический смысл. Методические особенности изучения линейной, квадратной и кубических функций, их свойства и график. Определение производной функции в точке, нахождение промежутков возрастания.
контрольная работа, добавлен 07.03.2017Основные направления модернизации математического образования. Недостаточность рассмотренных оригинальных способов решения задач с параметрами. Основные понятия и термины. Основные типы задач с параметрами. Линейные, квадратные и иррациональные уравнения.
курсовая работа, добавлен 09.12.2012Изучение определенного множества, на примере производной функции имеющей бесконечную правостороннюю и левостороннюю производную. Очерк нахождения функции путем дифференцирования в точке. Характеристика геометрического и физического смысла производной.
лекция, добавлен 29.09.2013Рассмотрение способов оценки меры иррациональности некоторых значений гипергеометрической функции Гаусса. Построение на основе интегральной конструкции линейной формы. Исследование коэффициентов формы при значениях параметра, стремящихся к бесконечности.
статья, добавлен 27.05.2018Понятие переменной величины. Применение степенной функции с различными показателями. Обобщение степенной функции, ее свойства с отрицательным нечетным целым показателем. Характеристика основных свойств и особенностей построения графиков степенных функций.
контрольная работа, добавлен 17.05.2018Рассмотрение основных свойств и графиков обратных тригонометрических функций. Существенные принципы преобразования выражений, содержащих эти функции. Обзор исторической справки. Изучение примеров решения уравнений. Задание различного уровня сложности.
презентация, добавлен 04.12.2014