Анализ и прогнозирование временных рядов: метод главных компонент SSA (гусеница)
Временные ряды и их исследования. Методы анализа временных рядов: метод Гусеница, основные направления его использования, сравнение его с другими методами (автоагрессия, разложение Фурье, Параметрическая регрессия). Описание метода, теоретические аспекты.
Подобные документы
- 26. Анализ Фурье
Роль анализа Фурье в прикладной математике и технических науках, его применение - приближение непериодических функций с помощью периодических функций. Конечные и комплексные ряды Фурье. Ряды для непрерывного сигнала и сигналов на бесконечном интервале.
курсовая работа, добавлен 17.06.2013 Теория аппроксимации периодических функций рядами Фурье. Разложение прямоугольного колебания в ряд Фурье. Явление Гиббса при приближении пилообразного сигнала с помощью рядов Фурье. Фильтрация зашумлённого сигнала с помощью быстрых преобразований.
лабораторная работа, добавлен 10.11.2010- 28. Ряды Фурье
Французский математик Фурье и его основные труды. Понятие и основные сведения о ряде Фурье. Достаточные признаки разложимости функции в ряд Фурье. Ряды Фурье для четных и нечетных функций. Ортогональная система функций, задача о колебании струны.
реферат, добавлен 12.12.2014 Геометрический и арифметический ряды. Свойства равномерно сходящихся рядов. Необходимый признак сходимости рядов. Интегральный признак сходимости ряда, ряд Дирихле. Знакочередующиеся и знакопеременные ряды. Абсолютная и условная сходимость рядов.
шпаргалка, добавлен 20.06.2009Моделирование на основе временных рядов. Формальные критерии аппроксимации и статистические гипотезы. Изучение моделей с переменной структурой. Проверка на значимость коэффициентов регрессии. Руководство по использованию программы Time Series Processing.
методичка, добавлен 26.05.2012Особенность понятия и видов числовых рядов. Основная характеристика необходимых и достаточных признаков сходимости. Теоретические аспекты радикального и интегрального примет Коши. Проведение исследования знакочередующихся и знакопеременных цепей.
курсовая работа, добавлен 18.05.2017Решение дифференциальных уравнений и линейных Бернулли. Исследование на сходимость знакоположительных рядов и рядов с положительными членами при помощи интегрального признака Коши. Вычисление признака Даламбера. Сравнение эталонных гармонических рядов.
контрольная работа, добавлен 29.03.2018Произвольный электростатический или магнитный скалярный потенциал как функция пространственных координат. Уравнение Лапласа. Цилиндрическая система координат в виде ряда Фурье. Метод разделения переменных для определения распределений потенциалов.
реферат, добавлен 12.02.2013Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.
курс лекций, добавлен 22.06.2014Возникновение и сущность математического метода Фурье. Характеристика разновидностей преобразования Фурье: непрерывного и дискретного, прямого и обратного, быстрого и оконного. Анализ свойств преобразования Фурье, сфер его применения и значения.
курсовая работа, добавлен 18.01.2016Решение задач прогнозирования потребления разнотипных энергоресурсов и холодной воды методом анализа временных рядов, а также прогнозирования уровней сложного временного ряда (окна данных), имеющего тренд-циклическую компоненту и случайную составляющую.
статья, добавлен 24.03.2018Признак Вейерштрасса о равномерной сходимости функционального ряда. Изучение метода нахождения интервала сходимости степенного ряда. Приближенное вычисление с помощью рядов Тейлора и Маклорена. Тригонометрический ряд Фурье от четных и нечетных функций.
курс лекций, добавлен 30.07.2017Группировка статистических данных. Анализ их совокупностей: построение рядов распределения, их графическое представление, определение показателей вариации. Статистические методы анализа взаимосвязи. Понятие и структура индекса и динамических рядов.
методичка, добавлен 06.11.2017Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Характерные особенности динамических рядов - дискретных и непрерывных. Визуальный анализ графиков динамических рядов. Направленность (тренд). Колебательная компонента. Случайная компонента. Обнаружение и выделение тренда. Порядок построения коррелограммы.
реферат, добавлен 22.08.2015Разложение тригонометрической функции в ряд Фурье с заданным интервалом. Создание линейных и квадратичных моделей. Составление кода программы и блок-схемы данной задачи. Определение шага интегрирования и точности вычислений. Тестирование программы.
лабораторная работа, добавлен 20.06.2022Фрактал - геометрическая форма, разделенная на части, каждая из которых - уменьшенная версия целого. Способы его построения. Методы определения фрактальной размерности для временного ряда. Примеры диагностики нестабильных состояний финансовой системы.
доклад, добавлен 22.02.2013Анализ и оценка предложенного метода для определения параметров модели для будущего прогноза, который базируется на основных характеристиках временных рядов. Его роль в упрощении задачи нахождения оптимальной модели на приемлемом уровне погрешности.
статья, добавлен 27.02.2019Анализ исходных динамических рядов, их исследование на непрерывность. Количественное изменение тесноты связи признака-функции и признаков-факторов методом парной корреляции. Расчет показателей вариации. Построение уравнения множественной регрессии.
курсовая работа, добавлен 22.10.2017- 45. Степенные ряды
Способ определения радиуса сходимости степенного ряда. Остаточный член формулы Тейлора, записанный в форме Лагранжа. Простое достаточное условие разложимости функции в ряд Тейлора. Дифференцирование степенных рядов для нахождения сумм некоторых рядов.
курсовая работа, добавлен 23.04.2011 - 46. Числовые ряды
Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.
курс лекций, добавлен 30.07.2017 - 47. Числовые ряды
Основные понятия числовых рядов и их важные свойства. Необходимый признак сходимости числового ряда. Установление сходимости и расходимости ряда помощью достаточных признаков. Интегральный признак Коши. Абсолютная и условная сходимость числовых рядов.
презентация, добавлен 20.12.2015 Группировка и ее виды. Графическое построение рядов распределений. Понятие вариации и обобщающих статистических показателей. Сущность корреляционно-регрессионного анализа. Ряды динамики и их статистический анализ. Определение экономических индексов.
контрольная работа, добавлен 11.12.2012- 49. Числовые ряды
Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.
лекция, добавлен 18.10.2013 Свойства, методы моделирования и оценка параметров устойчивых распределений. Анализ моделей GARCH, GARCH с устойчивыми остатками и SGARCH для финансовых временных рядов. Построение разных типов вероятностных моделей с помощью средств пакета Mathematica.
курсовая работа, добавлен 25.10.2012