Компакты в хаусдорфовом пространстве
Математический анализ и история возникновения понятия компактности. Определение Бореля-Лебега. Теоремы о компактности и следствия из них. Характеристика компактов как регулярных пространств, замкнутых в любом объемлющем их хаусдорфовом пространстве.
Подобные документы
Меры сходства между объектами в метрическом и конкурентном пространствах. Использование функции конкурентного сходства для создания эффективных алгоритмов решения всех основных задач Data Mining, получения количественной оценки компактности образов.
статья, добавлен 28.10.2018Свойства метрической проекции в гильбертовом пространстве. Анализ метрики Хауедорфа в пространстве замкнутых подмножеств. Изучение метрической проекции в банаховом пространстве, при доказательстве теоремы о неподвижной точке для многозначных отображений.
контрольная работа, добавлен 30.07.2017Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.
контрольная работа, добавлен 11.12.2012Доказательство условий, при выполнении которых семейство регулярных функций множества, заданных на алгебре подмножеств топологического пространства и принимающих значения в произвольном топологическом пространстве, являются равномерно исчерпывающими.
статья, добавлен 31.05.2013Изучение особенностей инъективного и сюръективного подходов к формированию регулярной фрактальной структуры. Характеристика фрактальной топологии объектов в геометрическом 2D пространстве. Принцип модулярного строения регулярных фрактальных структур.
статья, добавлен 26.06.2018Изучение свойств и описание состава пространств С.Л. Соболева: плотность, определения и обозначения. Исследование структуры интегральных операторов со слабой особенностью. Представления функции и теоремы вложения Соболева: эквивалент норм в пространстве.
лекция, добавлен 08.11.2012Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.
эссе, добавлен 30.06.2016Основные аксиомы стереометрии и их простейшие следствия. Пример доказательства параллельности и перпендикулярности прямых, плоскостей. Декартовы координаты и векторы в пространстве. Использование теоремы Пифагора. Задачи по стереометрии и их решение.
учебное пособие, добавлен 23.09.2012Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
курсовая работа, добавлен 20.10.2010Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.
реферат, добавлен 02.07.2013Особенности нестандартного анализа, который состоит в том, что бесконечно малые рассматриваются не как переменные величины, а как величины постоянные. Пример неархимедовой числовой системы. Понятие гипердействительного числа. Теорема компактности.
реферат, добавлен 01.11.2010Фундаментальные понятия геометрии. Прямая в пространстве как линия пересечения двух плоскостей. Направляющий вектор в каноническом уравнении. Угол между прямой и проекцией. Взаимное расположение точек на плоскости. Определение пересекающих по формуле.
презентация, добавлен 10.11.2014- 13. Интеграл Лебега
Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.
реферат, добавлен 12.03.2010 Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.
учебное пособие, добавлен 09.12.2016Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014- 16. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
учебное пособие, добавлен 13.02.2016 Число е - удивительный математический элемент, свойства которого можно наблюдать в решениях определённых задач и окружающем пространстве. Характеристика основных формул, применяющихся для определения данной константы. Сущность метода Монте-Карло.
творческая работа, добавлен 26.04.2019Основные теоремы о математическом ожидании, числовых характеристиках случайных величин. Вычисление корреляционного момента. Теоремы о дисперсии случайной величины. Теорема о линейной зависимости случайных величин. Определение коэффициента корреляции.
лекция, добавлен 18.03.2014Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.
курсовая работа, добавлен 10.07.2012Определение перпендикулярности прямых в пространстве, их расположение относительно друг друга. Определение прямой, перпендикулярной плоскости. Примеры и геометрические задачи, представляющие графическую интерпретацию прямой, перпендикулярной плоскости.
презентация, добавлен 29.01.2015- 21. Интеграл Римана
Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.
реферат, добавлен 19.02.2014 Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.
лекция, добавлен 26.01.2014Изучение особенностей непосредственного подсчета вероятностей. Определение сущности статистической и геометрической вероятности. Характеристика центральной предельной теоремы. Исследование распределения случайных величин. Анализ теоремы Линдеберга.
контрольная работа, добавлен 30.03.2015Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.
презентация, добавлен 26.01.2014Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
реферат, добавлен 18.04.2015