Статистический подход к формализации нейросетевого распознавания урофлоурограмм заболеваний в урологии

Описание подхода, основанного на элементах статистической теории обучения и вероятностных трактовках взаимозависимости между входами и выходами нейронных сетей по их обучению и тестированию. Задачи распознавания урофлоурограмм заболеваний в урологии.

Подобные документы

  • Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.

    лекция, добавлен 26.09.2017

  • Анализ способов блочного распознавания символов. Разработка метода распознавания инвентарных номеров железнодорожных подвижных единиц, основанного на комитетной нейроиммунной модели классификации. Обоснование преимуществ использования данного метода.

    статья, добавлен 29.06.2017

  • Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.

    статья, добавлен 08.02.2013

  • Разработка инструмента для установления норм удельных расходов электрической и тепловой энергии в зависимости от двух факторов – численности обучающихся и общей площади зданий. Применение нейронных сетей для решения задачи нормирования энергопотребления.

    статья, добавлен 30.05.2017

  • Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.

    курс лекций, добавлен 17.01.2011

  • Основные проблемы, существующие в системах 3D-распознавания, преимущества и недостатки метода. Комбинированный метод распознавания лиц по цифровым 2D и 3D-моделям для повышения надежности операции. Результаты эксперимента на основе базы CASIA-3D FaceV1.

    статья, добавлен 21.01.2018

  • Обзор систем оптического распознавания изображений: ABBYY Finereader, SimpleOCR, FreeOCR, Microsoft Office Document Imaging. Алгоритм распознавания образов: захват кадра; предварительная обработка (предобработка); локализация и распознавание объекта.

    реферат, добавлен 08.06.2019

  • Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.

    статья, добавлен 26.04.2017

  • Применение искусственного интеллекта в деятельности человека. Разработка алгоритма защиты систем компьютерного зрения. Виды вредоносных атак. Использование гауссовского зашумления в нейронных сетях для обеспечения безопасности распознавания образов.

    статья, добавлен 09.05.2022

  • Понятие "распознавание образов". Особенности разработки математической модели распознавания образов в кибернетике. Общая характеристика задач распознавания образов и их основные типы. Методы и принципы, применяемые в этой сфере вычислительной техники.

    контрольная работа, добавлен 30.07.2018

  • Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.

    реферат, добавлен 26.04.2016

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.

    статья, добавлен 03.02.2021

  • Фрактальное кодирование изображений для распознавания. Анализ пространственного распределения доменных и ранговых блоков, полученных в процессе кодирования. Построение фрактального кода, снижающего влияние дефектов изображения на качество распознавания.

    статья, добавлен 27.05.2018

  • Разработка принципов и создание системы распознавания номеров железнодорожных вагонов. Ее отличия от систем распознавания автомобильных номерных знаков. Анализ существующих и предложен ряд новых алгоритмов, предназначенных для повышения его точности.

    статья, добавлен 26.04.2019

  • Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.

    курсовая работа, добавлен 26.08.2010

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Изучение необходимости в системах распознавания символов. Наиболее распространенные системы оптического распознавания символов: Abbyy FineReader, CuneiForm от Cognitive. Особенности интерфейса, достоинств и недостатков. Автоматический перевод текста.

    реферат, добавлен 31.03.2012

  • Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.

    статья, добавлен 29.04.2017

  • Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.

    дипломная работа, добавлен 26.05.2018

  • Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.

    презентация, добавлен 03.12.2013

  • Рассмотрение задачи разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Применение морфологических операций для улучшения качества результата сегментации. Сегментация символов текстовых областей.

    статья, добавлен 23.02.2016

  • Анализ принципов применения признаковых классификаторов для распознавания символов. Определение требований, которым должны удовлетворять используемые признаковые классификаторы. Разработка и обоснование их модификаций, удовлетворяющих этим требованиям.

    статья, добавлен 18.01.2018

  • Презентация нового алгоритма параллельной предварительной обработки таблиц, основанного на теории приближенных множеств. Решение обобщенной задачи разбиения значений качественных и количественных атрибутов в условиях отсутствия некоторых значений.

    статья, добавлен 17.01.2018

  • Рассмотрение компьютерной диагностической системы для выявления распространенных заболеваний сердечно-сосудистой системы. Оценка нейронных сетей, обученных на примерах работы группы врачей-экспертов, лежащих в основе системы. Анализ значимости симптомов.

    статья, добавлен 26.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.