Алгебра Грассмана и ее приложения. Построение теории определителей с помощью алгебры Грассмана. Ее строение и тождества
Исследование различных систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Характеристика и доказательства теорем Ферма-Эйлера, Адольфа Гурвица и приложение к ней (Фердинанда Георга Фробениуса).
Подобные документы
Сущность и структурные компоненты дидактической игры, ее признаки и правила. История возникновения и особенности славянского алфавитного обозначения чисел. Разработка теории чисел математиками античного мира. Содержание и доказательство теорем Ферма.
реферат, добавлен 04.04.2013Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.
статья, добавлен 29.03.2019Завершение проблемы великой теоремы Ферма (ТФ). Бесконечный спуск для нечётных показателей. Доказательство ТФ методами элементарной алгебры. Алгоритм решения Диофантовых уравнений. Закономерность распределения простых чисел в натуральном числовом ряду.
статья, добавлен 30.03.2017Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.
статья, добавлен 01.10.2015Определение понятия системы аксиом алгебры октав; ее непротиворечивость и категоричность. Изучение понятия и свойств сопряженных октав. Рассмотрение основных тождеств, применяемых к октавам. Формулирование и доказательство теорем Гурвица и Фробениуса.
дипломная работа, добавлен 05.05.2012Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021Простые элементарные доказательства знаменитых теорем Гаусса, Абеля, Галуа, Кронекера о построение правильных многоугольников и неразрешимости уравнений в радикалах. Рассмотрение основных идей алгебры. Порядок извлечения корней из комплексных чисел.
статья, добавлен 18.11.2015Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.
статья, добавлен 03.03.2018Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015- 11. Пьер Ферма
Биография французского математика, одного из создателей аналитической геометрии и теории чисел, Пьера Ферма. Математика как увлечение. Две знаменитые теоремы из области теории чисел: малая теорема Ферма и "великая" теорема Ферма, их суть и доказательство.
доклад, добавлен 07.05.2015 - 12. Числовые системы
Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.
реферат, добавлен 29.10.2013 Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.
статья, добавлен 26.04.2019Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.
реферат, добавлен 30.03.2017Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.
статья, добавлен 03.03.2018Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.
статья, добавлен 27.09.2012- 17. Числа Фибоначчи
Краткие биографические данные о жизни Леонардо Пизанского - первого крупного математика средневековой Европы. Его математические труды: "Liber abaci", "Liber quadratorum", "Practica geometriae". Развитие алгебры и теории чисел. Сущность чисел Фибоначчи.
реферат, добавлен 26.10.2014 Биография Л. Эйлера - автора работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям. Научные труды Л. Эйлера: ряд Эйлера-Маклорена, задача о колебании струны, волновое уравнение. Обобщение теоремы Ферма.
контрольная работа, добавлен 16.06.2019История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.
реферат, добавлен 21.03.2013Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.
курсовая работа, добавлен 18.05.2016Рассмотрение принципов формирования целочисленных и дробных обобщенных числовых в последовательность. Ознакомление с тождествами Кассини чисел Фибоначчи. Исследование и характеристика методов обобщенных чисел приведения к тождеству типа Кассини.
статья, добавлен 24.01.2018Рассмотрение множества действительных чисел. Свойства пределов, связанные с арифметическими операциями. Изображение действительных чисел бесконечными десятичными дробями. Пределы последовательности и граница функции, их показатели и точки разрывов.
курс лекций, добавлен 13.01.2014Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.
книга, добавлен 25.11.2013Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.
курсовая работа, добавлен 14.06.2017- 25. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
реферат, добавлен 01.10.2013